

DATA SHEET

Product Name Metal Strip Chip Resistors

Part Name LR12 Series File No. SMD-SP-016

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

- 1.1 This specification for approve relates to the Metal Strip Chip Resistors manufactured by UNI-ROYAL.
- 1.2 High power rating up to 3 watts
- 1.3 Low TCR
- 1.4 Low inductance
- 1.4 RoHS complaint

2. Part No. System

Part No. includes 14 codes shown as below:

- 2.1 1st~4th codes: Part name. E.g.: LR12 2.2 5th~6th codes: Power rating.

Wattage	2	3	
Normal Size	2W	3W	

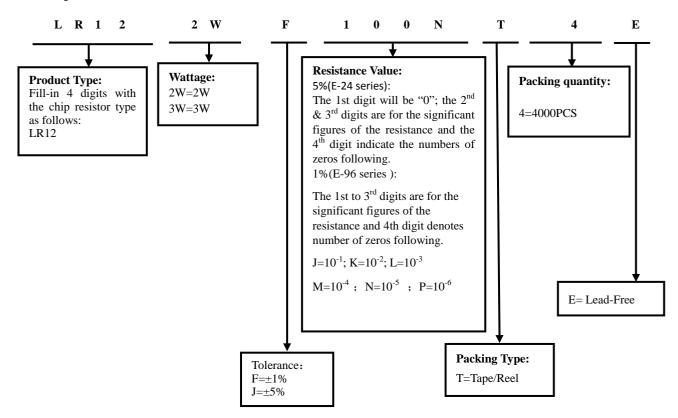
2.3 7th code: Tolerance. E.g.:

 $F=\pm1\%$

 $J=\pm 5\%$

- 2.4 8th~11th codes: Resistance Value.
- 2.4.1 If value belongs to standard value of ≥5% series, 8th code would be zero,9th~10th codes are significant figures of the resistance and 11th code is the power of ten.
- 2.4.2 If value belongs to standard value of $\leq 2\%$ series, $8^{th} \sim 10^{th}$ codes are significant figures of the resistance, and 11^{th} code is the power of ten.
- 2.4.3 11th codes listed as following:

 $0 = 10^0$ $1=10^{1}$ $2=10^{2}$ $3=10^3$ $4=10^4$ $5=10^5$ $6=10^6$ $J=10^{-1}$ $K=10^{-2}$ $I=10^{-3}$ $M=10^{-4}$ $N=10^{-5}$ P=10⁻⁶


- 2.5 12th~14th codes.
- 2.5.1 12th code: Packaging Type. E.g.: T=Tape/Reel
- 2.5.2 13th code: Standard Packing Quantity.

4=4000pcs

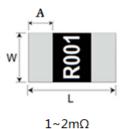
- 2.5.3 14th code: Special features.
 - E = Environmental Protection, Lead Free, or Standard type.

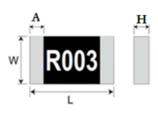
3. Ordering Procedure

(Example: LR12 2W $\pm 1\%$ 1m Ω T/R-4000)

4. Marking

4.1 Normally, the products marking are 4 digits.

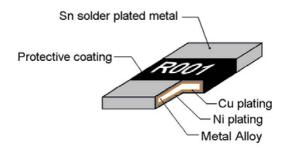

"R" designates the decimal location in ohms

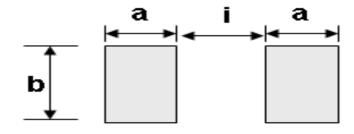

e.g. $1m\Omega$ the product marking is R001.

 $25 m\Omega$ the product marking is R025.

 $100m\Omega$ the product marking is R100.

5. Dimension



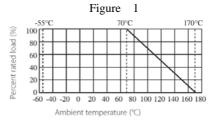

3~350mΩ

	Uı					
Туре	Power Rating	Resistance Range	L	w	Н	A
	2W	1~2mΩ	6.35±0.25	3.18±0.25	0.70±0.20	1.80±0.20
LR12		3~25mΩ				0.90±0.30
(2512)		26~350mΩ			0.70±0.30	
(====)	3W	1~2mΩ			0.70±0.20	1.80±0.20
		3~350mΩ			0.70±0.30	0.90±0.30

6. Structure

7. Recommend land pattern

				Unit: mm
Туре	Resistance Range	a	b	i
LR12	1m $Ω$, 2 m $Ω$	3.20	3.68	1.35
	3mΩ~350mΩ	2.30	3.68	3.15



8. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature of 70° C. For temperature in excess of 70° C , The load shall be derate as shown in figure 1.

The following equation may be used to determine the DC (Direct Current) or AC (Alternating Current) (RMS, root mean square value) of normal rated power. However, if the result value exceeds the highest current of regulated standards, the highest normal rated power is to be used

 $I = \sqrt{P/R}$

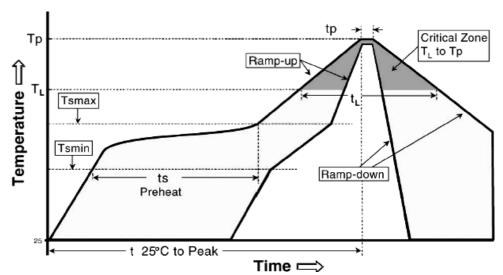
I = Rating current (A)

P= Rating Power (W)

 $R = Resistance(\Omega)$

9. Performance Specification

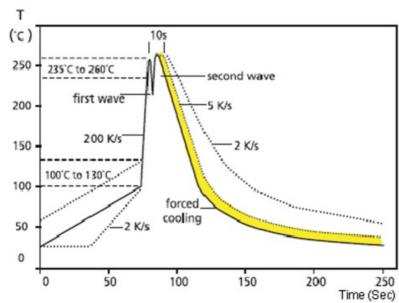
Test Item	Test Methods (GB/T 5729, JIS-C-5201, IEC 60115-1)	Requirements				
Temperature Coefficient	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{$	±50PPM/°C				
Short-time overload	4.13 The number of rated power are as follows: LR12-2W: 5 times of rated power; LR12-3W: 4times of rated power; for 5 seconds	ΔR≤±0.5%				
Load Life	4.25.1 Permanent Resistance change after 1000 hours operating at rated working current or Max .Working Current whichever less with duty cycle of 1.5hours "ON" · 0.5 hour "OFF" at 70±2°C ambient.	ΔR≤±1.0%				
High Temperature Exposure	MIL-STD-202 108A Exposed to a temperature of 155±2°C for 1000H.	ΔR≤±1.0%				
Biased Humidity	MIL-STD-202 Method 103 1000 hours 85°C/85%RH. Note: Specified conditions:10% of operating power. Measurement at 24±4 hours after test conclusion.	ΔR≤±0.5%				
Rapid change of temperature	4.19. 30 min at -55 °C and 30 min at 155°C; 100 cycles	ΔR≤±0.5%				
Terminal bending	4.33. 2mm ' 10Sec	ΔR≤±0.5%				
Resistance to Solder Heat	4.18 Dip the resister into a temperature of 260±5°C and hold it for a 10±1 seconds.	ΔR≤±0.5%				
Solderability	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder: 245±3°C; Dwell time in solder: 2~3seconds.	>95% Coverage				
Dielectric Withstanding Voltage	4.7 Applied 500 VAC for 1 minute, and Limit surge current 50 mA (max.)	No short or burned on the appearance				
Terminal Strength	4.16 5N, 10 seconds	No broken				



10. Soldering Condition

(This is for recommendation, please customer perform adjustment according to actual application)

10.1 Recommend Reflow Soldering Profile: (solder: Sn96.5 / Ag3 / Cu0.5)

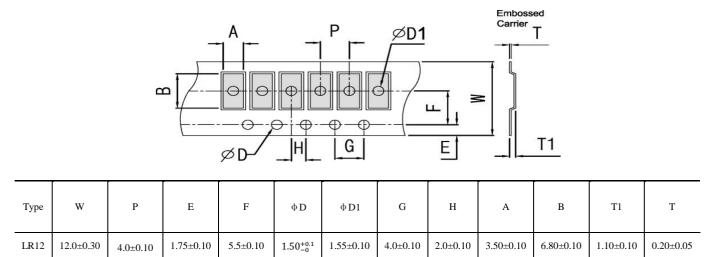


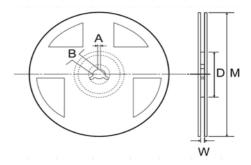
Profile Feature	Lead (Pb)-Free solder
Preheat:	
Temperature Min (Ts _{min})	150℃
Temperature Max (Ts _{max})	200℃
Time (Ts _{min} to Ts _{max}) (ts)	60 -120seconds
Average ramp-up rate:	
(Ts max to Tp)	3℃/ second max.
Time maintained above :	
Temperature (T_L)	217℃
Time (t _L)	60-150 seconds
Peak Temperature (Tp)	260℃
Time within ${+0 \atop -5}$ °C of actual peak Temperature (tp) ²	10 seconds
Ramp-down Rate	6°C/second max.
Time 25°C to Peak Temperature	8minutes max.

Allowed Re-flow times: 2 times

Remark: To avoid discoloration phenomena of chip on terminal electrodes, please use N_2 Re-flow furnace.

10.2 Recommend Wave Soldering Profile:





11. Packing

11.1 Embossed Dimensions:(Unit: mm)

11.2 Dimension of Reel: (Unit: mm)

Type	Taping	Qty/Reel	A	В	D	W	ΦМ
LR12	Embossed	4,000pcs	2.0±0.5	13.0±0.5	60.0±1.0	13.8±1.0	178±2.0

12. Note

- 12.1 UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 12.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

- 12.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine, rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

13. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~6	Apr.23, 2021	Haiyan Chen	Yuhua Xu
2	Extend the resistance range	3	Jan.18, 2022	Haiyan Chen	Yuhua Xu
3	Extend the resistance range	3	Mar.09, 2022	Haiyan Chen	Yuhua Xu
4	Extend the resistance range	3	May.10, 2022	Haiyan Chen	Yuhua Xu
5	Modify the temperature coefficient test conditions	4	Oct.26, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notic