

DATA SHEET

Product Name Wire-wound Fixed Resistors

Part Name KNH0 · KNHA Series

File No DIP-SP-009

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Wire-wound Fixed Resistors manufactured by UNI-ROYAL
- 1.2 Excellent flame tetardant coating
- 1.3 Too low or too high ohmic value can be supplied on a case to basis
- 1.4 Non-inductive type available

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Coated type, the 1^{st} to 3^{rd} digits are to indicate the product type and 4^{th} digit is the special feature.

Example: KNH0=KNH0

2.2 5th~6th digits:

This is to indicate the wattage or power rating. To dieting the size and the numbers,

- 2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U.
- 2.4 For power of 20watt to 99 watt, the 5th digit and 6th are indicate the wattage or power rating.

Example: 20=20W; 60=60W

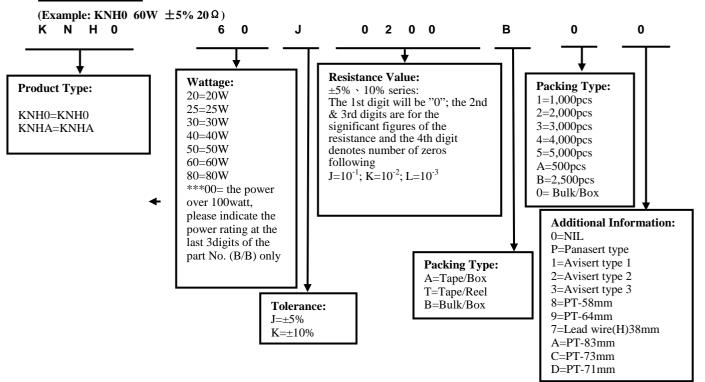
2.5 The 7th is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

$$J=\pm 5\%$$
 $K=\pm 10\%$

- 2.6 The 8th to 11th digits is to denote the Resistance Value.
- 2.6.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number; For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the 11th digit is the zeros following.
- 2.6.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11^{th} digit:

$$J=10^{-1}$$
 $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$

- 2.7 The 12th, 13th & 14th digits.
- 2.7.1 The 12th digit is to denote the Packaging Type with the following codes:

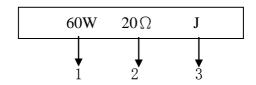

A=Tape/Box (Ammo pack) B=Bulk/Box

T=Tape/Reel P=Tape/Box of PT-26 products

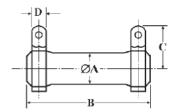
2.7.2 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. Using "0" to indicate the Bulk packaging types, the following letter codes is to be used for some packing quantities:

2.7.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

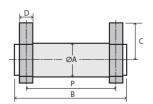
3. Ordering Procedure



4. Marking

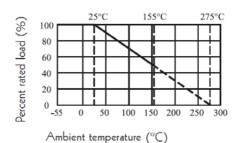


- 1. Wattage Rate
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: \pm 5% K: \pm 10%


Color of marking: Black Ink

5. Ratings & Dimension

KNH0 Type:



Туре	Dimension(mm)				Tolerance	D:-t D
	A±1.5	B±1.5	C±3.0	D±1.0	Tolerance	Resistance Range
KNH0 20W	19	50	19	5	±5% \ ±10%	0.4Ω~10ΚΩ
KNH0 25W	19	60	19	5	±5% \ ±10%	0.4Ω~10ΚΩ
KNH0 30W	19	75	19	5	±5% \ ±10%	0.5Ω~15ΚΩ
KNH0 40W	19	90	19	5	±5% \ ±10%	0.6Ω~20ΚΩ
KNH0 50W	31	75	31	8	±5% \ ±10%	3Ω~25ΚΩ
	28	73				
KNH0 60W	31	90	31	8	±5% \ ±10%	3Ω~30ΚΩ
	28	90				
KNH0 80W	31	115	31	8	±5% \ ±10%	3Ω~40ΚΩ
	28	113				
KNH0 100W	31	140	31	8	±5% \ ±10%	3Ω~50ΚΩ
	28	140				
KNHA 25W	21	41	24	5	±5% \ ±10%	0.4Ω~10ΚΩ
KNHA 30W	21	42	24	5	±5% \ ±10%	0.4Ω~10ΚΩ

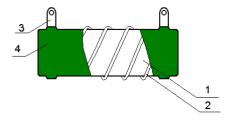
6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)


P = power rating (WATT.) R= nominal resistance (OHM)

7. Structure

No.	Name	Material
1	Basic body	Ceramics rod
2	Resistor	Alloy wire
3	Terminal lead	Iron ring
4	Coating	Insulated resin

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1) 4.8 Natural resistance changes per temp. Degree centigrade $ \begin{array}{c} R_2\text{-}R_1 \\ \hline R_1(t_2\text{-}t_1) \\ \hline R_1: \text{ Resistance Value at room temperature } (t_1);\\ R_2: \text{ Resistance at test temperature } (t_2) \\ t_{1:} +25^{\circ}\text{C or specified room temperature} \\ t_{2:} \text{ Test temperature } (-55^{\circ}\text{C or } 125^{\circ}\text{C}) \end{array} $		
Temperature Coefficient	≥20Ω: ±300PPM/°C <20Ω: ±400 PPM/°C			
Short-time overload	Resistance change rate must be in $\pm (2\% + 0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times rewv for 5 seconds.		
Resistance to soldering heat	Resistance change rate must be in $\pm (1\% + 0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°C solder for 10±1 seconds.		
Solderability	95% coverage min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C±3 °C Dwell time in solder: 2~3 seconds.		
Rapid change of temperature	Resistance change rate must be in $\pm (1\% + 0.05\Omega)$, and no mechanical damage.	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.		
Load life in humidity	Δ R/R: \pm (5%+0.05 Ω)	7.9 resistance change after 1,000 hours (1.5 hours "on",0.5 hour "off") at RCWV in a humidity test chamber controlled at 40 °C±2 °C and 90 to 95% relative humidity.		
Load life	Δ R/R: \pm (5%+0.05 Ω)	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "on", 0.5 hour "off" at 25 °C ±2°C ambient.		
Low Temperature Storage	Δ R/R: \pm (5%+0.05 Ω)	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.		
High Temperature Exposure	Δ R/R: \pm (5%+0.05 Ω)	MIL-STD-202 108A Upper limit temperature , for 16H.		

9. Label

Label shall be marked with following items:

(1) Type and style

(2) Nominal resistance

(3) Resistance tolerance

(4) Quantity

(5) Lot number

(6) PPM

Example:

CEMENT RESISTORS					
WATT: 60W	VAL: 20Ω				
Q'TY: 100	TOL: 5%				
LOT: 4021548	PPM:				

10. Note

- 10.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 ℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 10.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 10.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

11. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4	Feb.19, 2019	Haiyan Chen	Yuhua Xu
3	Modify the temperature coefficient test conditions	4	Oct.28, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice