

DATA SHEET

Product Name Lead Type Cement Fixed Resistors

Part Name PHF Series File No. DIP-SP-046

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Lead Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Square porcelain tube
- 1.3 Excellent insulation and moisture resistance
- 1.4 Winding process, good resistance to load
- 1.5Application : power supply of frequency converter

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Coated type, the 1^{st} to 3^{rd} digits are to indicate the product type and 4th digit is the special feature.

Example: PHF= Lead Type Cement Fixed Resistors

2.2 5th~6th digits:

2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

Wattage	4	5	7	9	11	17
Normal Size	4W	5W	7W	9W	BW	HW

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ K= $\pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

For the standard resistance values of E-96 series, the 8^{th} digit to the 10^{th} digits is to denote the significant figures of the resistance and the 11th digit is the 11^{th} digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $0{=}10^0 \quad 1{=}10^1 \quad 2{=}10^2 \quad 3{=}10^3 \quad 4{=}10^4 \quad 5{=}10^5$

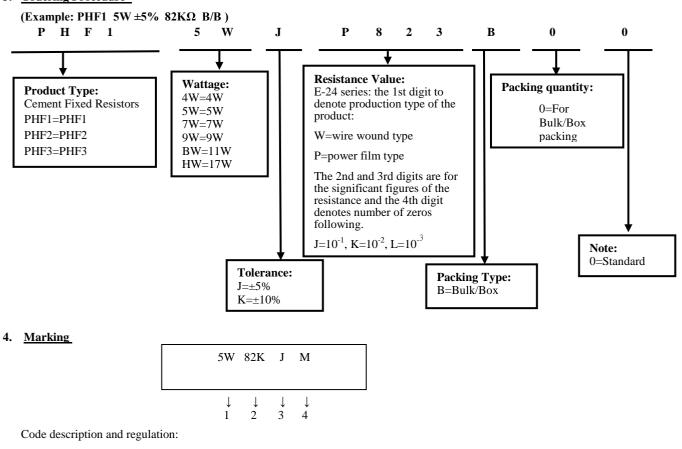
2.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

2.4.4 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with

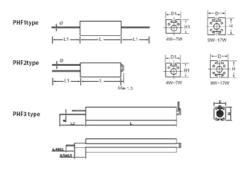
"Bulk/Box" packing requirements.


2.4.5 For some items, the 14th digit alone can use to denote special features of additional information with the following codes: 0=NIL

Lead Type Cement Fixed Resistors

3. Ordering Procedure

- 1. Wattage Rating
- 2. Nominal Resistance Value


3. Resistance Tolerance. J: \pm 5%

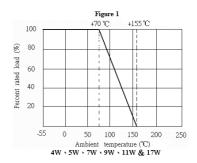
K: ± 10%

4. Pattern: M: Power film W: Wire wound

Color of marking: Black Ink

5. <u>Ratings & Dimension</u>

Unit: mm


Туре	H±1.5	H1±0.5	D±0.5	D1±0.5	L	Resistance Range
PHF1/PHF2 4W	-	8.5	-	7.5	20±1	1Ω~1ΚΩ
PHF1/PHF2 5W	-	8.5	-	7.5	25±1	1Ω~2.2ΚΩ
PHF1/PHF2 7W	-	9.5	-	7.5	38±1	1Ω~6.2ΚΩ
PHF1/PHF2 9W	10	/	9	-	38±1	1Ω~6.2ΚΩ
PHF1/PHF2/PHF3 11W	10	/	9	-	50±1	1Ω~6.2ΚΩ
PHF1/PHF2/PHF3 17W	10	/	9	-	75±2	1Ω~10ΚΩ

6. Derating Curve

Resistors shall have a power rating based on continuous full load operation at an ambient temperature of 70°c. For temperature in excess of 70 $^{\circ}$ C, the load shall be derated as shown in the figure 1.

6.1 Voltage Rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternatingcurrent (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (VOLT) P = power rating (WATT)

R = nominal resistance (OHM)

In no case shall the rated dc or RMS ac continuous working voltage be greater than the applicable maximum value.

7. <u>Type Designation</u>

The type designation shall be in the following form: Example:

PHF1	5W	J	82ΚΩ
Туре	Style	Resistance	Nominal
		Tolerance	Resistance

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	±350 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (\text{PPM/°C})$ $R_1: \text{Resistance Value at room temperature } (t_1) ;$ $R_2: \text{Resistance at test temperature } (t_2)$ $t_1: +25^{\circ}\text{C or specified room temperature}$ $t_2: \text{Test temperature } (-55^{\circ}\text{C or } 125^{\circ}\text{C})$		
Short-time Over load	Resistance change rate is: $\pm(3\%+0.05\Omega)$ max. With no evidence of mechanical damage.	4.13 permanent resistance changes after the application of a potential of 2.5 times RCWV or the max. Overload voltage respectively specified in the above list, whichever less for 5 seconds.		
Dielectric withstanding voltage	No evidence of flashover, mechanical damage, arcing or insulation breaks down.	4.7 resistors shall be clamped in the trough of a 90° metallic v- block and shall be tested at ac potential respectively for 60+10/- 0 seconds. Voltage:2000V		

Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 		
Resistance to soldering heat	Resistance change rate is: $\pm (1\%+0.05\Omega)$ Max. With no evidence of mechanical damage	 4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5 °C solder for 10±1 seconds. 		
Load life Resistance change rate is $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.		4.25 .1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "on", 0.5 hour "off" at $70^{\circ}C \pm 2^{\circ}C$ ambient.		
Low Temperature Storage	Resistance change rate is $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.		
High Temperature Exposure	Resistance change rate is $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	MIL-STD-202 108A Upper limit temperature , for 16H.		

9. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

- a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice