

DATA SHEET

Product Name High Power Wire-wound Aluminum Shell Resistance

Part Name HAWR Series

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. <u>Scope:</u>

- 1.1 This datasheet is the characteristics of High Power Wire-wound Aluminum Shell Resistance manufactured by UNI-ROYAL.
- 1.2 Anti-vibration, high stability.
- 1.3 Excellent transient current impact capability, suitable for the start of the inverter under harsh conditions.
- 1.4 Application: Frequency Conversion Equipment, such as Elevator, Freezer, Crane, Lift etc.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 High Power Wire-wound Aluminum Shell Resistance the 1st to 4rd digits are to indicate the product type.

Example: HAWR= High Power Wire-wound Aluminum Shell Resistance

2.2 $5^{th} \sim 6^{th}$ digits:

2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

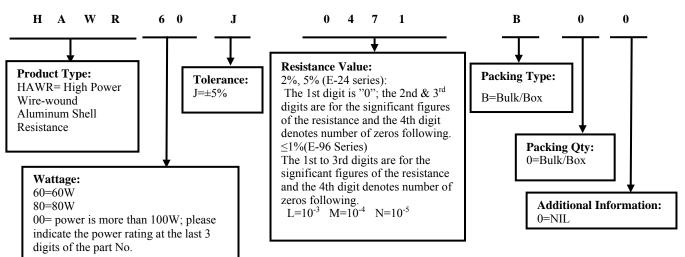
 $1/16W \sim 1/2W (< 1W)$

Wattage		1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16
Normal Size		W2	W3	W4	W5	W6	W8	WA	WG
Small Size		S2	S3	S4	S5	S6	S8	SA	SG
$W\sim 16W (\geq 1W)$									
Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	38	5S	7S	8S	9S	AS	FS

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ $K=\pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10_{th} digits are to denote the significant figures of the resistance and the 11th digit is the zeros following;

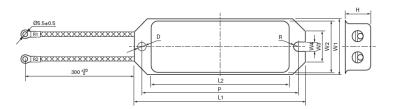
For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

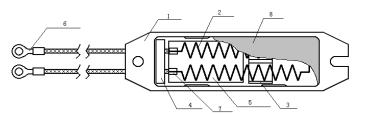

 $0=10^{0} 1=10^{1} 2=10^{2} 3=10^{3} 4=10^{4} 5=10^{5} 6=10^{6} J=10^{-1} K=10^{-2} L=10^{-3} M=10^{-4} N=10^{-5} P=10^{-6} 2.4.3 The 12^{th}, 13^{th} \& 14^{th} digits.$

The 12th digit is to denote the Packaging Type with the following codes: B=Bulk /Box

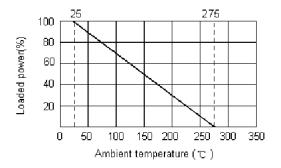
- 2.4.4 Current Sense Resistors, The 13th digit should be filled with "0"
- 2.4.5 Current Sense Resistors, The 14th digit should be filled with "0"


3. Ordering Procedure

(Example: HAWR 60W $\pm 5\%$ 470 Ω B/B)


4. Dimension

								Uı	nit:mm
Туре	L1±1	L2±2	P±1	W1±1	W2±1	W3±0.5	W4±0.2	D±0.2	H±1
HAWR60W	100	75.5	90	30	28	16.5	4.5	4.6	16.5
HAWR80W	130.5	104.5	117.5	43	38.5	22	6.0	6.0	21
HAWR100W	130	110	118	42	39	22.5	6.0	6.0	20
				-					


*Remark: For further information, please contact our sales team.

5. Structure

No.	Name	Material Generic Name	Remark
1	Aluminous crust	Aluminum	
2	Alloy wire	Ni Cr	
3	Pedestal	Al ₂ O ₃ CaO	
4	Ceramic parts	Al ₂ O ₃ CaO	
5	Mica	Si Al	
6	Terminal	Cu Sn	
7	Terminal	Cu Sn	
8	Filling Materials	SiO ₂	

6. Derating Curve

6.1Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. <u>Performance Specification</u>

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	±350 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 - R_1}{R_1 (t_2 - t_1)} \times 10^6 (\text{PPM/°C})$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (Upper limit temperature or Lower limit temperature) t_1: +25°C or specified room temperature t_2: Upper limit temperature or Lower limit temperature test temperature
Short-time overload	Resistance change rate is: $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or the max. Overload voltage respectively specified in the above list, whichever less for 5 seconds.
Humidity (Steady State)	Resistance change rate is: $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	7.9 Resistance change after 240 hours without load in a humidity test chamber controlled at $40^{\circ}C\pm 2^{\circ}C$ and 90 to 95% relative humidity.
Load life	Resistance change rate is: $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	4.25.1 Permanent resistance change after 1,000 hours without load in a humidity test chamber controlled at $25^{\circ}C\pm 2^{\circ}C$ ambient.
Rapid change of temperature	Resistance change rate is: $\pm (5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.

8. <u>Note</u>

8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , etc.

9. <u>Record</u>

Version I	Description	Page	Date	Amended by	Checked by
1 F	First version	1~4	Apr.16, 2019	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice