

DATA SHEET

Product Name Power Flat Alloy Resistors

Part Name PFAT Series File No. DIP-SP-035

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Power Flat Alloy Resistors manufactured by UR.
- 1.2 Low inductance
- 1.3 Safety flameroof construction
- 1.4 Thin lightweight body save the PCB space considerably

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

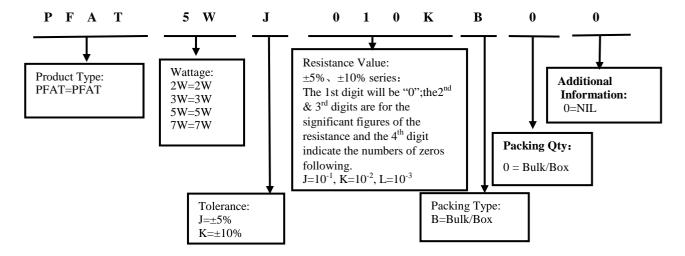
- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PFAT=PFAT-type
- 2.2 5th~6th digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: $2W=2W \cdot 3W=3W \cdot 5W=5W$

- 2.3 The 7^{th} digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ $K=\pm 10\%$
- 2.4 The 8^{th} to 11^{th} digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0",the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;
- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0=10^0$$
 $1=10^1$ $2=10^2$ $3=10^3$ $4=10^4$ $5=10^5$
 $6=10^6$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

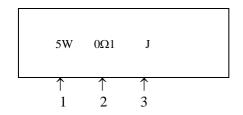

B=Bulk/Box

2.5.2 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. Using "0" to indicate the Bulk packaging types, the following letter codes is to be used for some packing quantities:

2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product .Example: 0= standard product

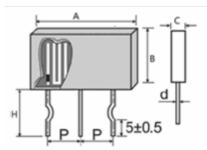
3. Ordering Procedure

(Example: PFAT 5W $\pm 5\%$ 0.1 Ω B/B))



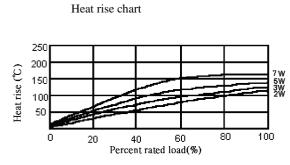
4. Marking

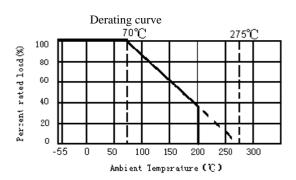
Example:


Code description and regulation:

- 1. Wattage Rate
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. $J: \pm 5\%$

K: ± 10%


Color of marking: Black Ink


5. Ratings & Dimension

Type	Dimension(mm) A±1.0 B±1.0 C±0.5 d±0.05 P±1.0 H±1				Tolerance	Resistance Range		
PFAT 2W	26.0	9.0	5.0	0.75	10	13	±5% \ ±10%	0.05Ω~1Ω
PFAT 3W	26.0	13.0	5.0	0.75			±5% \ ±10%	$0.05\Omega\sim1\Omega$
PFAT 5W	26.0	18.0	5.0	0.75			±5% \ ±10%	0.05Ω~1Ω
PFAT 7W	26.0	20.0	5.0	0.75			±5% \ ±10%	0.1Ω-1Ω

6. Derating Curve

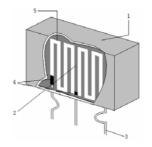
6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

 $Where: RCWV = rated \ dc \ or \ RMS \ ac \ continuous \ working \ voltage \ at \ commercial-line \ frequency \ and \ waveform \ (VOLT.)$

P = power rating (WATT.)


R= nominal resistance (OHM)

7. <u>Structure</u>

No.	Name	Material Generic Name
1	Ceramic case	Steatite
2	Cement	SiO_2
3	Terminal	Copper wire Platted with tin
4	Weld point	/
5	Alloy ribbon	Ni & Cr

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	0.01Ω ~ 0.1Ω Please contact uniohm $\ge 0.1\Omega$: ±350PPM/°C;	4.8 Natural resistance changes per temp. Degree centigrade $ \begin{array}{c} R_2\text{-}R_1 \\ \hline \\ R_1(t_2\text{-}t_1) \end{array} \times 10^6 \text{ (PPM/°C)} \\ R_1\text{: Resistance Value at room temperature } (t_1) \text{ ;} \\ R_2\text{: Resistance at test temperature } (t_2) \\ t_{1:} + 25^{\circ}\text{C or specified room temperature} \\ t_{2:} \text{ Test temperature } (-55^{\circ}\text{C or } 125^{\circ}\text{C}) \end{array} $		
Short-time overload	Resistance change rate must be in $$\Delta R/R{\le}{\pm}(2\%{+}0.05\Omega)$$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds.		
Dielectric withstanding voltage	2000V	4.7 Resistors shall be clamped in the trough of a 90°metallic v-block and shall be tested at ac potential respectively for 60+10/-0 seconds.		
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads.		
Resistance to soldering heat	Resistance change rate must be in $\Delta R/R \le \pm (1\% + 0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5 °C solder for 10±1 seconds.		
Resistance to solvent	No deterioration of protective coating and markings	4.29 Speciments shall be immersed in a bath of sopropanol completely for 3 minutes with ultrasonic.		
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245 °C ±3 °C Dwell time in solder: 2~3 seconds.		
Humidity (Steady state)	Resistance change rate must be in $\Delta R/R \le \pm (5\% + 0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after a 240 hours exposure in a humidity test chamber controlled at $40^\circ\!\!\!\!\mathrm{C} \pm 2^\circ\!\!\!\!\mathrm{C}$ and 90 to 95% relative humidity.		

Load life in humidity	Resistance change rate must be in $\Delta R/R \le \pm (5\% \pm 0.05\Omega)$, and no mechanical damage.	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and 90 to 95% relative humidity.		
Load life	Resistance change rate must be in $\Delta R/R \le \pm (5\% + 0.05\Omega)$, and no mechanical damage.	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70° C $\pm 2^{\circ}$ C ambient.		
Low Temperature Storage	Resistance change rate must be in $\Delta R/R \le \pm (5\% + 0.05\Omega)$, and no mechanical damage.	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.		
High Temperature Exposure	Resistance change rate must be in $\Delta R/R \le \pm (5\% + 0.05\Omega)$, and no mechanical damage.	MIL-STD-202 108A Upper limit temperature , for 16H.		

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	4	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice