

DATA SHEET

Product Name Thermal Fuse Wire-wound Resistors

Part Name ASSY Series File No. DIP-SP-071

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

- 1. Scope
- 1.1 This datasheet is the characteristics of Thermal Fuse Wire-wound Resistors manufactured by UNI-ROYAL.
- 1.2 High quality non-flame coating
- 1.3 Self fusing
- 1.4 High current load and pulse capacity
- 1.5 Application : Automobile

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Resistors the 1^{st} to 4^{rd} digits are to indicate the product type.

Example: ASSY= ASSY type

 $2.2\ 5^{th}$ digits are to indicate the Voltage :

Example: 1=12V

2.3 6th digits are to indicate the Cut off temp :

```
Example: A=92°C ; B=167°C ; C=184°C ; D=216°C ; E=227°C ; F=240°C
```

- 2.4 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $K = \pm 10\%$
- 2.5 The 8th to 11th digits is to denote the Schematic style and resistance.

Example: 2A00=2 resistors circuit A

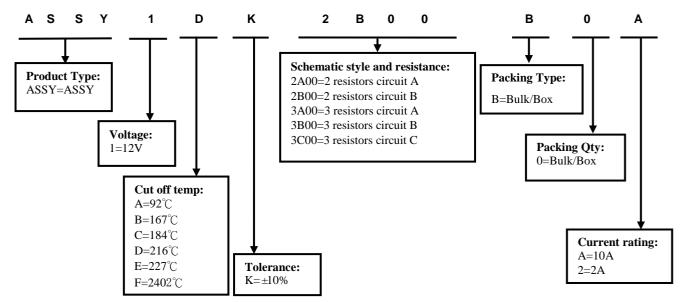
2B00=2 resistors circuit B

3A00=3 resistors circuit A

3B00=3 resistors circuit B

3C00=3 resistors circuit C

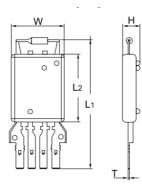
- 2.6 The 12th, 13th & 14th digits.
- 2.6.1The 12th digit is to denote the Packaging Type with the following codes:

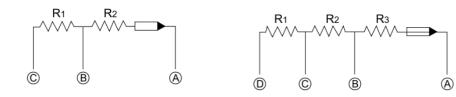

B=Bulk /Box

- 2.6.2 The 12th digit is to denote the packing qty . B=Bulk/Box
- 2.6.3 The 14th digit is to denote the Current rating

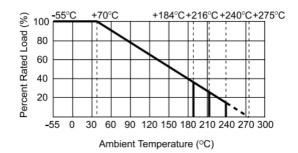
A=10A ; B=2A

3. Ordering Procedure

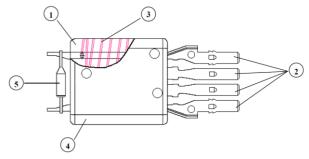

(Example: ASSY 12V 216°C $\pm 10\%$ 10A 0.5 Ω +0.5 Ω B/B)



4. Dimension



				Unit: mm		
Туре	L1±3	L2 ±3	$W \pm 3$	H (max)	T ±0.2	Resistance Range
ASSY-4 Terminal	74	43	39	13	0.8	0.1Ω~10Ω
ASSY-5 Terminal	80	43	34	13	0.8	0.1Ω~10Ω


5. <u>Circuit</u>

6. Derating Curve

7. Construction

No.	Subpart Name	Material	
1	Body	Rod Type Ceramics	
2	Terminal	Nickel plated iron surface	
3	Resistance wire	Ni-Cr Alloy	
4	Coating	Insulated & Non-Flame (Color : Green)	
5	Thermal fuse	Thermal fuse	

8. <u>Performance Specification</u>

Characteristic	Limits	Test Method (GB/T 5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (PPM/^{\circ}C)$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (t_2) t_1: +25 °C or specified room temperature t_2: Test temperature (+125 °C)
Short-time overload	Resistance change rate is $\pm(5\%+0.05\Omega)$ Max. with no evidence of mechanical damage	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds
Rapid change of temperature	Resistance change rate must be in $\pm (5\%+0.05\Omega)$, and no mechanical damage.	4.19 30 min at -55 °C and 30 min at 155 °C; 5 cycles.
Load life in humidity	Resistance change rate must be in $\pm (5\%+0.05\Omega)$, and no mechanical damage.	7.9 Resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON",0.5 hour "OFF" in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.
Load life	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C ± 2 °C ambient.

9. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

Description	Page	Date	Amended by	Checked by
First version	1~4	Jul.26, 2023	Haiyan Chen	Yuhua Xu
	1	1 0		

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice