

DATA SHEET

Product Name Array Type Cement Temperature Fusing Resistors

Part Name TFRC 2W $\pm 5\%$ 360 Ω $\sim 200 \Omega$ $\sim 1K \Omega$ File No. DIP-SP-083

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33		
Email	marketing@uni-royal.cn		
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

1. <u>Scope</u>

This datasheet is the characteristics of Array Type Cement Temperature Fusing Resistors manufactured by UNI-ROYAL.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 These 4 digits are to indicate the product type :

Example:TFRC=TFRC- type

2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:

2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6^{th} digit will be the letters of W.

Example: 2W=2W;

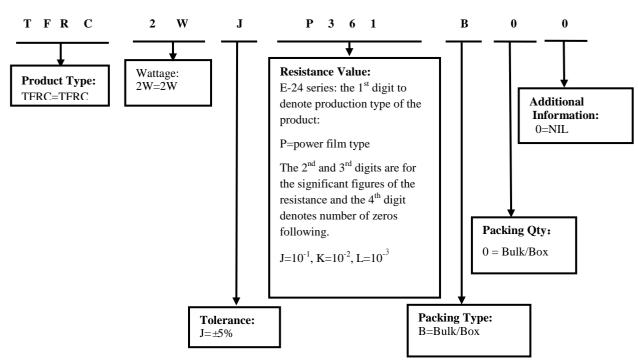
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$
- 2.4 The 8^{th} to 11^{th} digits is to denote the Resistance Value.

2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following

Example: P102=1KQ

2.5 The 12th, 13th & 14th digits.

2.5.1 The 12th digit is to denote the Packaging Type with the following codes: B=Bulk/Box

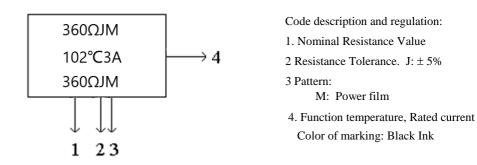

2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products

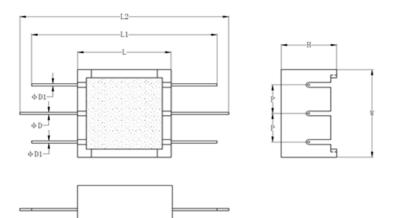
with"Bulk/Box"packing requirements.

2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure

(Example: TFRC 2W ±5% 360Ω B/B)



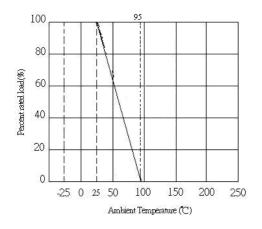

4. Marking

Example:

5. Dimension & Ratings

5.1 Dimension

Туре	Dimension(mm)								Resistance Range
	L±0.5	L1±3	L2±3	₩±0.5	H±0.5	Р±0.3	ФD±0.04	ФD1±0.04	Power Film
TFRC 2W	16	80	80	16.2	8	5	0.58	0.8	360Ω
	17.5 70.5	70.5 02	92.5	17	8.5	5	1	0.8	200Ω
		70.5	83.5						1ΚΩ


5.2 Ratings

Туре	Tolerance	Resistance Range	Function temperature	Rated current	Rated voltage	
TFRC 2W	±5%	360 Ω	102°C	3A	AC250V	
		200Ω	94°C	10A	AC250V	
		1ΚΩ	99°C	10A		

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as

determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. <u>Performance Specification</u>

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1)
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times Rcwv for 5 seconds.
Solderability	95% Coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C ±3 °C Dwell time in solder: 2~3seconds.
Resistance to soldering heat	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}C$ solder for 10 ± 1 seconds.
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Apply 1000V for 60~70 seconds.
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Humidity (Steady State)	Δ R/R: ±(5%+0.1 Ω) Max. With no evidence of mechanical damage.	7.9 Resistance change after 1,000 hours without load in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.
Load life	Δ R/R: \pm (5%+0.1 Ω) Max. With no evidence of mechanical damage.	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25^{\circ}C \pm 2^{\circ}C$ ambient.

Checked by

Haiyan Chen

8. <u>Note</u>

1

- 8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

1~5

8.3. Storage conditions as below are inappropriate:

First version

- a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br,etc.

Amended by

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice

Nov.08, 2022

Song Nie