

DATA SHEET

Product Name Automotive High Power Thick Film Chip Resistors

Part Name HQ Series File No. SMD-SP -019

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

厚聲集團 NI-ROYAL Automotive High Power Thick Film Chip Resistors

1. <u>Scope</u>

1.1 This specification for approve relates to the Automotive High Power Thick Film Chip Resistors manufactured by UNI-ROYAL.

1.2 Comply with the relevant provision of AEC-Q200.

- 1.3 Suitable for reflow & wave soldering.
- 1.3 Application car.
- 1.4 Compliant with RoHS directive.
- 1.5 Halogen free requirement.

2. Part No. System

Part No. includes 14 codes shown as below:

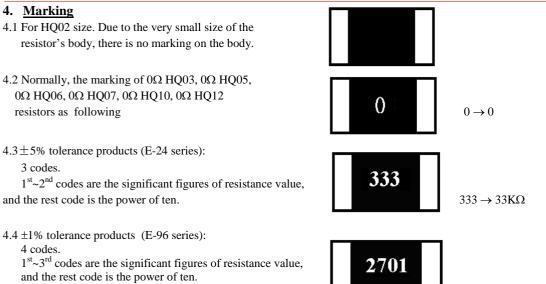
2.1 1st~4th codes: Part name. E.g.: HQ02,HQ03,HQ05,HQ06,HQ07,HQ10,HQ12

2.2 5th~6th codes: Power rating

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.2 5 th ~6 th codes: Power rating. E.g.: W=Normal S	ize	"1~G" = "1	~16"				
If power rating is equal or lower than 1 watt, 5 th code would be "W" and 6 th code would be a number or letter. E.g.: WA=1/10W W3=1/3W 2.3 7 th code: Tolerance. E.g.: D=±0.5% F=±1% G=±2% J=±5% K=±10% 2.4 8 th -11 th codes: Resistance Value. 2.4.1 If value belongs to standard value of E-24 series, the 8 th code is zero, 9 th -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the 8 th -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the 8 th -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.311 th codes. Iisted as following: 0=10 th 1=10 ¹ 2=10 ² 3=10 ³ 4=10 ⁴ 5=10 ⁵ 6=10 ⁶ J=10 ⁻¹ K=10 ² L=10 ⁻³ M=10 ⁴ 2.5 12 th -14 th codes. 2.5.1 12 th code: Standard Packing Quantity. 4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. Ordering Procedure: Fill-in 4 digits with the chip resistor type as follows: Watiage: Normal size: Normal size: Watiage: Normal size: Normal					1/10	1	2	-
E.g.: WA=1/10W W3=1/3W E.g.: WA=1/10W W3=1/3W 2.3 T^{h} code: Tolerance. E.g.: D=±0.5% F=±1% G=±2% J=±5% K=±10% 2.4 8^{h} -11 ^h codes: Resistance Value of E-26 series, the 8^{th} code is zero, 9^{h} -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the 8^{th} -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.311 th codes listed as following: $0=10^{0}$ 1=10 ¹ 2=10 ² 3=10 ³ 4=10 ⁴ 5=10 ⁵ 6=10 ⁶ J=10 ⁻¹ K=10 ⁻² L=10 ⁻³ M=10 ⁻⁴ 2.5 12 th -14 th codes. 2.5.1 12 th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13 th code: Standard Packing Quantity. 4=4.000 pcs 5=5,000 pcs C=10,000 pcs D=20,000 pcs E=15,000 pcs Chip Product: BD=B/B-20000 pcs TC=T/R-10000 pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10K\Omega T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Fill-in 4 digits with the chip resistor type as follows: H_{Q02} Normal size: H_{Q03} H_{Q05} H_{Q03}	Normal Size	07 W	2 W3	W5	WA	1W	2W	_
E.g.: WA=1/10W W3=1/3W E.g.: WA=1/10W W3=1/3W 2.3 T^{h} code: Tolerance. E.g.: D=±0.5% F=±1% G=±2% J=±5% K=±10% 2.4 8^{h} -11 ^h codes: Resistance Value of E-26 series, the 8^{th} code is zero, 9^{h} -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the 8^{th} -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.311 th codes listed as following: $0=10^{0}$ 1=10 ¹ 2=10 ² 3=10 ³ 4=10 ⁴ 5=10 ⁵ 6=10 ⁶ J=10 ⁻¹ K=10 ⁻² L=10 ⁻³ M=10 ⁻⁴ 2.5 12 th -14 th codes. 2.5.1 12 th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13 th code: Standard Packing Quantity. 4=4.000 pcs 5=5,000 pcs C=10,000 pcs D=20,000 pcs E=15,000 pcs Chip Product: BD=B/B-20000 pcs TC=T/R-10000 pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10K\Omega T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Fill-in 4 digits with the chip resistor type as follows: H_{Q02} Normal size: H_{Q03} H_{Q05} H_{Q03}	If nower rating is	aual or lower th	on 1 watt 5 th	code would	a "W" and	6 th code w	ould be a t	-
2.4 $g^{h} - 11^{h}$ codes: Resistance Value. 2.4.1 If value belongs to standard value of E-24 series, the g^{th} code is zero, $g^{th} - 10^{th}$ codes are the significant figures of resistance value, and the 11^{h} code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the $g^{th} - 10^{h}$ codes are the significant figures of resistance value, and the 11^{th} code is the power of ten. 2.4.3 I1^{th} codes listed as following: $0 = 10^{0} 1 = 10^{1} 2 = 10^{2} 3 = 10^{3} 4 = 10^{4} 5 = 10^{5} 6 = 10^{6} J = 10^{-1} K = 10^{-2} L = 10^{-3} M = 10^{-4}$ 2.5 $12^{th} - 14^{th}$ codes. 2.5.1 12^{th} code: Standard Packing Quantity. 4 = 4,000 pcs 5 = 5,000 pcs C = 10,000 pcs D = 20,000 pcs E = 15,000 pcs Chip Product: BD=B/B-20000 \text{ pcs} TC=T/R-10000 \text{ pcs} 2.5.3 14^{th} code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10K\Omega T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E $\frac{1}{Fill \cdot in 4} digits with the chip resistor Vye as follows;W_{3}=1/3WW_{3}=1/3WW_{3}=1/3WW_{3}=1/3WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{2}=1/2WW_{3}=1/3WW_{3}=1$					Je w allu			lumber of letter.
2.4.1 If value belongs to standard value of E-24 series, the 8 th code is zero, 9 th ~10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the 8 th ~10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.311 th codes listed as following: 0=10 ⁰ 1=10 ¹ 2=10 ² 3=10 ³ 4=10 ⁴ 5=10 ⁵ 6=10 ⁶ J=10 ⁻¹ K=10 ⁻² L=10 ⁻³ M=10 ⁻⁴ 2.5 12 th ~14 th codes. 2.5.1 12 th code: Standard Packing Quantity. 4=4,000 pcs 5=5,000 pcs C=10,000 pcs D=20,000 pcs E=15,000 pcs Chip Product: BD=B/B-20000 pcs TC=T/R-10000 pcs 2.5.3 14 th code: Standard Packing Quantity. E = Environmental Protection, Lead Free, or Standard type. 3. Ordering Procedure (Example: HQ05 1/3W ±5% 10KΩ T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E V Wattage: Normal size: Watap:10W W5=1/5W W3=1/3W W3			F=±1%	G=±	2%	J=±5%		$K=\pm 10\%$
11 th code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the 8 th -10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.311 th codes listed as following: $0 = 10^{0} 1 = 10^{1} 2 = 10^{2} 3 = 10^{3} 4 = 10^{4} 5 = 10^{5} 6 = 10^{6} J = 10^{-1} K = 10^{-2} L = 10^{-3} M = 10^{-4}$ 2.5 12 th -14 th codes. 2.5.1 12 th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13 th code: Standard Packing Quantity. 4 = 4,000 pcs 5 = 5,000 pcs C = 10,000 pcs D = 20,000 pcs E = 15,000 pcs Chip Product: BD=B/B-2000 pcs TC=T/R-10000 pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10K\Omega T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Fill-in 4 digits with the chip resistor type as follows: HQ03 HQ03 HQ03 HQ03 HQ03 HQ05 HQ05 HQ05 HQ05 HQ05 HQ07 HQ05 HQ05 HQ07 HQ05 HQ07 HQ05 HQ07 HQ05 HQ07 HQ05 HQ07 H			41		4h 4h			
2.4.2 If value belongs to standard value of E-96 series, the 8 th ~10 th codes are the significant figures of resistance value, and the 11 th code is the power of ten. 2.4.311 th codes listed as following: $0=10^{0} 1=10^{1} 2=10^{2} 3=10^{3} 4=10^{4} 5=10^{5} 6=10^{6} J=10^{-1} K=10^{2} L=10^{-3} M=10^{-4}$ 2.5. 12 th 14 th codes. 2.5.1 12 th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13 th code: Standard Packing Quantity. 4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10KΩ T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Fill-in 4 digits with the chip resistor type as follows: HQ03 HQ03 HQ03 HQ05 Wa=1/10W Wa=1/10W Wa=1/2W Wa			series, the 8 th	code is zero,	$9^{\text{tn}} \sim 10^{\text{tn}} \cos \theta$	des are the	significant	figures of resistance value, and the
the power of ten. 2.4.311 th codes listed as following: $0 = 10^{0} 1 = 10^{1} 2 = 10^{2} 3 = 10^{3} 4 = 10^{4} 5 = 10^{5} 6 = 10^{6} J = 10^{-1} K = 10^{-2} L = 10^{-3} M = 10^{4}$ 2.5 $12^{10} \cdot 14^{th}$ codes. 2.5.1 $12^{10} \cdot code$: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13^{th} code: Standard Packing Quantity. 4 = 4,000pcs 5 = 5,000pcs C = 10,000pcs D = 20,000pcs E = 15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14^{th} code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10K\Omega T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ03 HQ03 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ07 S=5000PCS HQ07 S=5000PCS HQ07 S=5000PCS				th				the second s
2.4.311 th codes listed as following: $0=10^{0} \ 1=10^{1} \ 2=10^{2} \ 3=10^{3} \ 4=10^{4} \ 5=10^{5} \ 6=10^{6} \ J=10^{-1} \ K=10^{-2} \ L=10^{-3} \ M=10^{-4}$ 2.5 $12^{th} \ rotes.$ 2.5.1 $12^{th} \ codes.$ Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 $13^{th} \ code: Standard Packing Quantity. 4=4.000 \ pcs \ 5=5.000 \ pcs \ C=10,000 \ pcs \ D=20,000 \ pcs \ E=15,000 \ pcs \ Chip Product: BD=B/B-20000 \ pcs \ TC=T/R-10000 \ pcs \ C=10,000 \ pcs \ C=10,000 \ pcs \ C=10,000 \ pcs \ C=10,000 \ pcs \ D=20,000 \ pcs \ E=15,000 \ pcs \ Chip Product: BD=B/B-20000 \ pcs \ TC=T/R-10000 \ pcs \ C=10,000 \ pcs \ cos \ $	0	d value of E-96	series, the 8 th	$\sim 10^{\text{m}}$ codes a	re the signif	ficant figure	es of resist	ance value, and the 11 th code is
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
2.5 $12^{th} \cdot 14^{th}$ codes. 2.5.1 12^{th} code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13^{th} code: Standard Packing Quantity. 4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14^{th} code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 $1/3W \pm 5\%$ 10K Ω T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ03 HQ05 HQ05 W 2=1/2W 07=3/4W H (E-96 series): 1 st .5 rd codes are the significant 1 st .5	2.4.511 codes listed as following $0-10^0$ $1-10^1$ 2-	-10^2 $3-10^3$	$4-10^4$ 5	-10^5 6 -10^{-10}	⁶ I-10 ⁻¹	$K - 10^{-2}$	$I - 10^{-3}$	$M - 10^{-4}$
2.5.1 12 th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13 th code: Standard Packing Quantity. 4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10K\Omega T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ03 HQ03 HQ05 HQ06 HQ06 HQ06 HQ06 HQ06 HQ06 HQ06 HQ07 HQ06 HQ06 HQ07 HQ06 HQ07 HQ06 HQ07 HQ06 HQ07 HQ06 HQ07 HQ07 HQ06 HQ07 H HQ07 H HQ07 HQ07 HQ07 H HQ07 H H HQ07 H H H H H H H H H H H H H H H H H H H		5-10	4–10 J	-10 0-10	J=10	K =10	L=10	WI-10
2.5.2 13 th code: Standard Packing Quantity. 4=4,000pcs $5=5,000pcs$ C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. Ordering Procedure (Example: HQ05 1/3W ±5% 10KΩ T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ05 HQ05 HQ05 HQ06 HQ06 HQ06 HQ06		. E.g.: C=Bulk	Т	=Tape/Reel				
Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10KΩ T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ05 HQ06 HQ05 HQ05 HQ06 HQ05				.1				
2.5.3 14 th code: Special features. E = Environmental Protection, Lead Free, or Standard type. 3. Ordering Procedure (Example: HQ05 1/3W ±5% 10KΩ T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ05 HQ05 HQ05 HQ06 HQ06 HQ06 HQ06 HQ06 HQ06 HQ06 HQ07 HQ0	4=4,000pcs 5=	5,000pcs	C=10,000p	cs D=20),000pcs	E=15,0	00pcs	
E = Environmental Protection, Lead Free, or Standard type. 3. Ordering Procedure (Example: HQ05 1/3W ±5% 10KΩ T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ03 HQ05 HQ06 HQ06 HQ07: S=5000PCS HQ03,HQ05,HQ06, HQ07: S=5000PCS			TC=T	/R-10000pcs				
3. <u>Ordering Procedure</u> (Example: HQ05 1/3W ±5% 10K\Omega T/R-5000) H Q 0 5 W 3 J 0 1 0 3 T 5 E Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ05 HQ06 HQ06 HQ06 HQ06 HQ07: $5^{H} Cle -24$ series): $1^{st} code is zero, 2^{nd} - 3^{rd} codes are the significant figures of resistance value, and the rest code is the power of ten. 1^{st} code is zero, 2^{nd} - 3^{rd} codes are the significant figures of resistance value, and the rest code is the power of ten. 1^{st} code is zero, 2^{nd} - 3^{rd} codes are the significant HQ05 HQ06 HQ07: 5=5000PCS$	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E = Environmenta	l Protection, Lea	d Free, or Sta	andard type.				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 Oudoning Proceedings							
H Q 0 5W 3J0 1 0 3T5EProduct Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ05 HQ05 HQ05 HQ06Wattage: Normal size: WA=1/10W W5=1/5W W3=1/3W W2=1/2W $07=3/4W$ Resistance Value: 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance value, and the rest code is the power of ten. 1% (E-96 series): $1^{st} \sim 3^{rd}$ codes are the significantPacking quantity: HQ02 C=10000PCS HQ03,HQ05,HQ06, HQ07: S=5000PCS								
Product Type: Fill-in 4 digits with the chip resistor type as follows: HQ02 HQ03 HQ05 HQ05Wattage: Normal size: $WA=1/10W$ $W5=1/5W$ $W3=1/3W$ $W2=1/2W$ $HQ05$ Resistance Value: 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance value, and the rest code is the power of ten. 1% (E-96 series): $1^{st} \sim 3^{rd}$ codes are the significantPacking quantity: HQ02: C=10000PCS HQ03,HQ05,HQ06, HQ07: $5=5000PCS$	(Example: HQ05 1/3W)	±5% ΙΟΚΩ Τ/	R-5000)					
Fill-in 4 digits with the chip resistor type as follows:Normal size: $WA=1/10W$ 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance value, and the rest code is the power of ten.Packing quantity: HQ02 C=10000PCSHQ02 HQ03 HQ05 HQ05W3=1/3W $W2=1/2W$ 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance power of ten.HQ03, HQ05, HQ06, HQ07: $5=5000PCS$	H Q 0 5	W 3	J	0	1 0	3	Т	5 E
Fill-in 4 digits with the chip resistor type as follows:Normal size: $WA=1/10W$ 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance value, and the rest code is the power of ten.Packing quantity: HQ02 C=10000PCSHQ02 HQ03 HQ05 HQ05W3=1/3W $W2=1/2W$ 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance power of ten.HQ03, HQ05, HQ06, HQ07: $5=5000PCS$	<u> </u>	<u> </u>	· —		+			
Fill-in 4 digits with the chip resistor type as follows:Normal size: $WA=1/10W$ 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance value, and the rest code is the power of ten.Packing quantity: HQ02 C=10000PCSHQ02 HQ03 HQ05 HQ05W3=1/3W $W2=1/2W$ 5% (E-24 series): 1^{st} code is zero, $2^{nd} \sim 3^{rd}$ codes are the significant figures of resistance power of ten.HQ03, HQ05, HQ06, HQ07: $5=5000PCS$			I Г	Resistance V	/alue•		기ㅡ	+
the chip resistor type as follows: HQ02 HQ03 HQ05 HQ05 $WA=1/10W$ $W5=1/5W$ $W3=1/3W$ $W2=1/2W$ $07=3/4W$ 1^{st} code is zero, $2^{sta} - 3^{sta}$ codes are the significant figures of resistance value, and the rest code is the power of ten. 1% (E-96 series): $1^{st} - 3^{sta}$ codes are the significant $1^{st} - 3^{sta}$ codes are the significant $1^{st} - 3^{sta}$ codes are the significantHQ02: C=10000PCS HQ03, HQ05, HQ06, HQ07: $5=5000PCS$				5% (E-24 set	ries):		P	acking quantity:
type as follows: HQ02 HQ03 HQ05 HQ05 $W5=1/5W$ $W3=1/3W$ $W2=1/2W$ $07=3/4W$ the significant figures of resistance value, and the rest code is the power of ten. 1% (E-96 series): $1^{st} \sim 3^{rd}$ codes are the significantC=10000PCS HQ03,HQ05,HQ06, HQ07: 5=5000PCS								
HQ03 $W3=1/3W$ power of ten. $HQ05,HQ00,HQ00,HQ00,HQ00,HQ00,HQ00,HQ00,$	type as follows:							
HQ05 HO06 W2=1/2W 07=3/4W 1% (E-96 series): $1^{st}\sim 3^{rd}$ codes are the significant 5=5000 PCS						is the		- / - /
HOU6 I a second se				1% (E-96 set	ries):			
	HQ06	0/=3/4W 1W=1W						=5000PCS
inguies of resistance value and the								- / -
HQ10 HQ12 W=2W rest code is the power of ten. $J=10^{-1}$; $K=10^{-2}$; $L=10^{-3}$	HQ12	22		rest code is t $I-10^{-1}$ · K-10	ne power of $1^{-2} \cdot I = 10^{-3}$	ten.		
				J-10 , IX-I0	, , 1,-10			¥

Tolerance: F=±1%

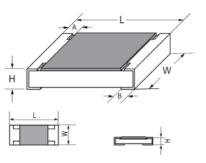
 $J=\pm5\%$


Special Feature: E= Lead-Free

Packing Type:

T=Tape/Reel

原章集團 UNI-ROYAL Automotive High Power Thick Film Chip Resistors



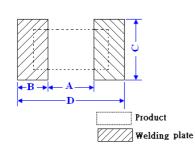
Letter "R" in mark means decimal point.

5. Dimension

T	Dimension(mm)									
Туре	L	W	Н	Α	В					
HQ02(0402)	1.00±0.10	0.50 ± 0.05	0.35±0.05	0.20±0.10	0.25±0.10					
HQ03(0603)	1.60±0.10	0.80±0.10	0.45±0.10	0.30±0.20	0.30±0.20					
HQ05(0805)	2.00±0.15	1.25+0.15/-0.10	0.55±0.10	0.40±0.20	0.40±0.20					
HQ06(1206)	3.10±0.15	1.55+0.15/-0.10	0.55±0.10	0.45±0.20	0.45±0.20					
HQ07(1210)	3.10±0.10	2.60±0.20	0.55±0.10	0.50 ± 0.25	0.50±0.20					
HQ10(2010)	5.00±0.10	2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20					
HQ12(2512)	6.35±0.10	3.20±0.20	0.55±0.10	0.60±0.25	0.50±0.20					

 $2701 \rightarrow 2.7 \mathrm{K}\Omega$

6. <u>Resistance Range</u>


Trime	Power	Resistance R	ange
Туре	Rating	1.0%	5.0%
HQ02	1/10W	1Ω~10M	1Ω~10M
HQ03	1/5W	1Ω~10M	1Ω~10M
HQ05	1/3W	1Ω~10M	1Ω~10M
HQ06	1/2W	1Ω~10M	1Ω~10M
HQ07	3/4W	1Ω~10M	1Ω~10M
HQ10	1W	1Ω~10M	1Ω~10M
HQ12	2W	1Ω~10M	1Ω~10M

7. Ratings

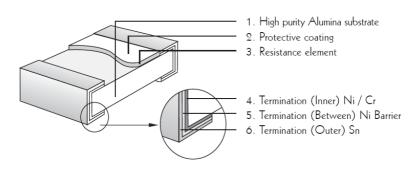
Туре	Max. Working Voltage	Max. Overload Voltage	Dielectric withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max. Overload Current of Jumper	Operating Temperature
HQ02	50V	100V	100V	$< 50 \mathrm{m}\Omega$	1A	2A	-55℃~155℃
HQ03	75V	150V	300V	$< 50 \mathrm{m}\Omega$	1A	2A	-55℃~155℃
HQ05	150V	300V	500V	$<\!\!50\mathrm{m}\Omega$	2A	5A	-55℃~155℃
HQ06	200V	400V	500V	$< 50 \mathrm{m}\Omega$	2A	10A	-55℃~155℃
HQ07	200V	500V	500V	$< 50 \mathrm{m}\Omega$	2A	10A	-55℃~155℃
HQ10	200V	500V	500V	$< 50 \mathrm{m}\Omega$	2A	10A	-55℃~155℃
HQ12	250V	500V	500V	$<\!\!50\mathrm{m}\Omega$	2A	10A	-55℃~155℃

Trme	Dimension(mm)								
Туре	Α	В	С	D					
HQ02	0.5 ± 0.05	0.5 ± 0.05	0.6 ± 0.05	1.5 ± 0.05					
HQ03	0.8 ± 0.05	0.8 ± 0.05	0.9 ± 0.05	2.4±0.05					
HQ05	1.0 ± 0.1	1±0.1	1.4±0.1	3±0.1					
HQ06	2.0±0.1	1.1±0.1	1.8±0.1	4.2±0.1					
HQ07	2.0±0.1	1.1±0.1	2.9±0.1	4.2±0.1					
HQ10	3.6±0.1	1.4±0.1	3±0.1	6.4±0.1					
HQ12	4.9±0.1	1.35±0.1	3.7±0.1	7.6±0.1					

9. Derating Curve

8. Soldering pad size recommended

Power rating will change based on continuous load at ambient temperature from -55 to 155° C. It is constant between -55 to 70° C, and derate to zero when temperature rise from 70° C to 155° C.


Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance (Ω) In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.

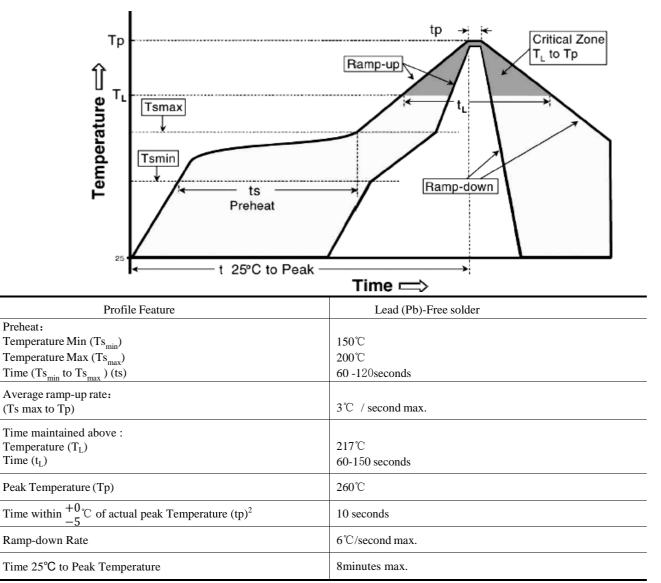
10. Structure

11. Performance Specification

Characteristic	Limits	Ref. Standards	Test Method
Operational life	$\pm 5\%: \pm (3.0\% + 0.1\Omega)$ $\pm 1\%: \pm (1.0\% + 0.1\Omega)$	MIL-STD-202 Method 108	1,000 hours at 125°C, applied de-rated (36%) power of continuous working voltage, 1.5 hours on, 0.5 hour off.
	<100mΩ		Apply to rate current for 0Ω
Electrical Characterization	1Ω <r≤10ω :="" °c<br="" ±200ppm="">10Ω<r≤10mω :="" td="" °c<="" ±100ppm=""><td>User Spec</td><td>Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.</td></r≤10mω></r≤10ω>	User Spec	Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.
Short-time overload	$\pm 1\%$: ±(1.0%+0.05Ω) ±5%: ±(2.0%+0.05Ω)	JIS-C-5201	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds
External Visual	No Mechanical Damage	MIL-STD-883 Method 2009	Electrical test not required. Inspect device construction, marking and workmanship
Physical Dimension	Reference 5. Dimension Standards	JESD22 MH Method JB-100	Verify physical dimensions to the applicable device detail specification. Note: User(s) and Suppliers spec. Electrical test not required.
Resistance to Solvent	Marking Unsmeared	MIL-STD-202 Method 215	Note: Add Aqueous wash chemical – OKEM Clean or equivalent. Do not use banned solvents.
Terminal Strength	Not broken	JIS-C-6429	Force of 1.8kg for 60 seconds.
High Temperature	±(1.0%+0.1Ω)	MIL-STD-202 Method 108	1000hrs. @T=155°C.Unpowered. Measurement at 24±2 hours after test conclusion.
Exposure (Storage)	<50mΩ		Apply to rate current for 0Ω
Temperature	$\pm (1.0\% + 0.1\Omega)$	JESD22 Method	1000 Cycles (-55 $^{\circ}$ C to +155 $^{\circ}$ C). Measurement at 24±2 hours after test conclusion.
Cycling	<50mΩ	JA-104	Apply to rate current for 0Ω
Biased Humidity	$\pm 5\%$: ±(3.0%+0.05Ω) ±1%: ±(1.0%+0.05Ω)	MIL-STD-202 Method 103	1000 hours 85°C,85%RH. Note: Specified conditions: 10% of operating power. Measurement at 24±2 hours after test conclusion.
	<100mΩ		Apply to rate current for 0Ω
Mechanical Shock	±(1.0%+0.1Ω)	MIL-STD-202 Method 213	Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration (D) is 6ms,velocity 12.3ft/s 100Hz.
Vibration	±(1.0%+0.1Ω)	MIL-STD-202 Method 204	5g's for 20 min., 12cycle each of 3 orientations. Note: Use 8"*5"PCB. 031" thick 7 secure points onone long side and 2 secure points at corners of opposite sides. Parts mounted within 2' from any secure point. Test from 10- 2000Hz.
ESD	±(3.0%+0.1Ω)	AEC-Q200-002	With the electrometer in direct contact with the discharge tip, verify the voltage setting at levels of $\pm 500V, \pm 1KV$, $\pm 2KV, \pm 4KV, \pm 8KV$, The electrometer reading shall be within $\pm 10\%$ for voltages from 500V to $\leq 800V$.
Soldrability	Coverage must be over 95%.	J-STD-020E	For both leaded & SMD. Electrical test not required. Magnification 50X. Conditions: a) Method B 4hrs at 155 °C dry heat, the dip in bath with 245 °C,5s. b) Method D: at 260 °C, 30±0.5s

Automotive High Power Thick Film Chip Resistors

No ignition of the tissue paper or scorching or the pinewood board	UL-94	V-0 or V-1 are acceptable. Electrical test not required.
±(1.0%+0.05Ω)	HS C (420	2mm (Min)
<50mΩ	JIS-C-6429	Apply to rate current for 0Ω
No flame	AEC-Q200-001	Only requested, when voltage/power will increase the surface temp to 350°C.Apply voltage from 9V to 32V. No flame; No explosion.
±(1.0%+0.05Ω)	MIL-STD-202 Method 210	Condition B No per-heat of samples. Note: Single Wave Solder-Procedure 2 for SMD and Procedure 1 for Leaded with solder within 1.5mm of device body.
$\frac{1}{10000000000000000000000000000000000$	Apply to rate current for 0Ω	
±(1.0%+0.05Ω)	ASTM B-809-95	sulfur(saturated vapor), Temperature: 50±2°C Humidity: 86 ~ 90%RH, 1000H.
	scorching or the pinewood board $\pm (1.0\% + 0.05\Omega)$ $<50m\Omega$ No flame $\pm (1.0\% + 0.05\Omega)$ $<50m\Omega$	scorching or the pinewood board UL-94 $\pm (1.0\% + 0.05\Omega)$ JIS-C-6429 <50mΩ

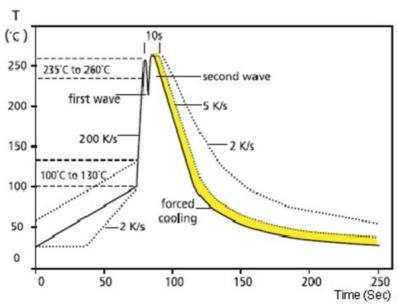

Sulfuration test : H_2S 3~5PPM 50°C± 2°C 91%~93%RH 1000H

 $\pm 5\%:(5.0\%+0.05\Omega); \pm 1\%:(1.0\%+0.05\Omega)$

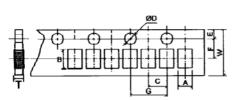
11. Soldering Condition

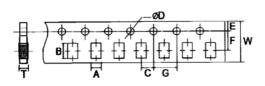
(This is for recommendation, please customer perform adjustment according to actual application)

11.1 Recommend Reflow Soldering Profile : (solder : Sn96.5 / Ag3 / Cu0.5)


Allowed Re-flow times : 2 times

Remark : To avoid discoloration phenomena of chip on terminal electrodes, please use N2 Re-flow furnace .

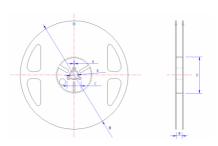

11.2 Recommend Wave Soldering Profile : (Apply to 0603 and above size)


12. Packing

12.1 Dimension of Paper Taping :(Unit: mm)

Туре	A ±0.1	B ±0.1	C ±0.05	$\Phi D^{+0.1}_{-0}$	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.05
HQ02	0.65	1.20	2.00	1.50	1.75	3.50	4.00	8.00	0.42

Туре	A ±0.2	B ±0.2	С ±0.05	$\Phi D^{+0.1}_{-0}$	E ±0.1	F ±0.05	G ±0.1	W ±0.2	Т ±0.1
HQ03	1.10	1.90	2.0	1.5	1.75	3.5	4.0	8.0	0.67
HQ05	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81
HQ06	2.00	3.60	2.0	1.5	1.75	3.5	4.0	8.0	0.81
HQ07	2.80	3.50	2.0	1.5	1.75	3.5	4.0	8.0	0.75



12.2 Dimension of plastic taping: (Unit: mm)

Туре	A ±0.2	В ±0.2	С ±0.05	$\Phi D_{-0}^{+0.1}$	$\Phi D1^{+0.25}_{-0}$	Е ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1	
HQ10	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00	
HQ12	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00	

12.3 Dimension of Reel : (Unit: mm)

Turno	Taning	Oty/Reel	A±0.5	B±0.5	C±0.5	D+1	M±2	W+1
Туре	Taping	Qty/Reel	A±0.5	B10.3	C±0.3	D±1	IVITZ	¥V⊥1
HQ02	Paper	10,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HQ03	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HQ05	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HQ06	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HQ07	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HQ10	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8
HQ12	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8

Automotive High Power Thick Film Chip Resistors

13. Note

13.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75% RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

13.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

13.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

13.4 This product is used for automotive electronics. UNI-ROYAL will not be responsible for any damage, expense or loss caused by the use of this specification in any special environment. This series of products are suitable for automotive electronics applications, as shown below, If there are other applications, you need to confirm with UNI-ROYAL whether they are applicable:

a. Control unit for information, entertainment, navigation, audio;

b. Control unit for comfortable doors, windows, seat;

c. Control unit for internal lighting.

14. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~7	Mar.20, 2018	Haiyan Chen	Nana Chen
2	 Modify the product name Modify the Power 	1~7	Nov.22, 2018	Haiyan Chen	Nana Chen
3	Modify characteristic	5~6	Feb.16, 2019	Haiyan Chen	Yuhua Xu
4	Experimental method and standard for adding vulcanization	6	Mar.05, 2019	Haiyan Chen	Yuhua Xu
5	Modify the Power	4	May.23, 2019	Haiyan Chen	Yuhua Xu
6	Modify HQ03 Max. Overload Voltage, HQ12 Max .Working Voltage	3	Jan.22, 2020	Haiyan Chen	Yuhua Xu
7	 Modify the reflow curve and add the wave soldering curve Notes for improvement 	6~7 8	Apr.22, 2020	Haiyan Chen	Yuhua Xu
8	Modify the power and derating curve to unify the standards	3~4	Dec.04, 2020	Haiyan Chen	Yuhua Xu
9	Modify ESD test	5	Feb.20, 2024	Song Nie	Haiyan Chen

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice