DATA SHEET

Product Name Precision Metal Film Fixed Resistors
Part Name MF Series
File No. DIP-SP-002

Uniroyal Electronics Global Co., Ltd.

88\#, Longteng Road, Economic \& Technical Development Zone, Kunshan, Jiangsu, China

Tel	$+8651257631411 / 22 / 33$
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1．Scope

1．1 This datasheet is the characteristics of Precision Metal Film Fixed Resistors manufactured by UNI－ROYAL．
1．2 Flame Retardant type available
1．3 Low noise \＆voltage coefficient
1．4 Low temperature coefficient range
1．5 Multiple epoxy coating on vacuum－deposited metal film provideds superior moisture protection
1．6 Nichrome resistive element provides stable performance in various environments
1．7 Compliant with RoHS directive．
1．8 Halogen free requirement．

2．Part No．System

The standard Part No．includes 14 digits with the following explanation：
2．1 Coated type，the $1^{\text {st }}$ to $2^{\text {rd }}$ digits are to indicate the product type ．
Example：MF＝Metal Film Fixed Resistors
2．2 The $3^{\text {th }}$ digit is the special feature．
Example： $0=$ Standard product ；F＝Flame Retardant ；I＝Non－inductive
$2.34^{\text {th }} \sim 6^{\text {th }}$ digits：
2．3．1 This is to indicate the wattage or power rating．To dieting the size and the numbers，
The following codes are used；and please refer to the following chart for detail：
W＝Normal Size；S＝Small Size；U＝Extra Small Size；＂1＂～＂G＂to denotes＂1＂～＂16＂as Hexadecimal：
1／16W～1／2W（ $<1 \mathrm{~W}$ ）

Wattage	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$1 / 6$	$1 / 8$	0.6	0.4
Normal Size	W 2	W 3	W 4	W 5	W 6	W 8	$/$	$/$
Small Size	S 2	S 3	S 4	S 5	S 6	S 8	06	$/$
Extra Small Size	U 2	U 3	U 4	U 5	U 6	U 8	$/$	04

$1 \mathrm{~W} \sim 16 \mathrm{~W}(\geqq 1 \mathrm{~W})$

Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1 W	2 W	3 W	5 W	7 W	8 W	9 W	AW	FW
Small Size	1 S	2 S	3 S	5 S	7 S	8 S	9 S	AS	FS
Extra Small Size	1 U	2 U	3 U	5 U	7 U	8 U	9 U	AU	FU

2．3．2 For power rating less than 1 watt，the $4^{\text {th }}$ digit will be the letters W, S or U to represent the size required $\&$ the $5^{\text {th }}$ digit will be a number or aletter code．
Example：WA $=1 / 10 \mathrm{~W} ; \mathrm{U} 2=1 / 2 \mathrm{~W}$－SS．
2．3．3 For power of 1 watt to 16 watt，the $4^{\text {th }}$ digit will be a number or a letter code and the $5^{\text {th }}$ digit will be the letters of W, S or U ． Example：AW＝10W；3S＝3W－S
2．4 The $6^{\text {th }}$ digit is to denote the Resistance Tolerance．The following letter code is to be used for indicating the standard Resistance Tolerance．

$$
\mathrm{F}= \pm 1 \% \quad \mathrm{G}= \pm 2 \% \quad \mathrm{~J}= \pm 5 \%
$$

2．5 The $7^{\text {th }}$ digits will be used to indicated the requested Temperature Coefficient．
（1） $\mathrm{B}=15 \mathrm{PPM}$
（2）$B=25 \mathrm{PPM}$
（3） $\mathrm{F}=50 \mathrm{PPM}$
（4） $\mathrm{G}=100 \mathrm{PPM}$
（5）J＝200PPM

2．6 The $8^{\text {th }}$ to $11^{\text {th }}$ digits is to denote the Resistance Value．
2．6． 1 For the standard resistance values of E－24 series，the $8^{\text {th }}$ digit is＂ 0 ＂，the $9^{\text {th }} \& 10^{\text {th }}$ digits are to denote the significant figures of the resistance and the $11^{\text {th }}$ digit is the number of zeros following；
For the standard resistance values of E－96 series，the $8^{\text {th }}$ digit to the $10^{\text {th }}$ digits is to denote the significant figures of the resistance and the $11^{\text {th }}$ digit is the $11^{\text {th }}$ digit is the zeros following．
2．6．2 The following number s and the letter codes are to be used to indicate the number of zeros in the $11^{\text {th }}$ digit：

$$
0=10^{0} \quad 1=10^{1} \quad 2=10^{2} \quad 3=10^{3} \quad 4=10^{4} \quad 5=10^{5} \quad 6=10^{6} \quad \mathrm{~J}=10^{-1} \quad \mathrm{~K}=10^{-2} \quad \mathrm{~L}=10^{-3} \quad \mathrm{M}=10^{-4}
$$

2．7 The $12^{\text {th }}, 13^{\text {th }} \& 14^{\text {th }}$ digits．
The $12^{\text {th }}$ digit is to denote the Packaging Type with the following codes：
$\mathrm{A}=$ Tape／Box（Ammo pack）B＝Bulk／Box $\mathrm{T}=$ Tape／Reel $\quad \mathrm{P}=$ Tape／Box of PT－26 products
2．8 The $13^{\text {th }}$ digit is normally to indicate the Packing Quantity of Tape／Box \＆Tape／Reel packaging types．The following letter code and number is to be used for some packing quantities：
$\mathrm{A}=500 \mathrm{pcs} \quad \mathrm{B}=2500 \mathrm{pcs} \quad 1=1000 \mathrm{pcs} \quad 2=2000 \mathrm{pcs}$
2．9 For some items，the 14th digit alone can use to denote special features of additional information with the following codes：
$0=$ NIL
$\mathrm{P}=$ Panasert type $\quad 1=$ Avisert type 1
$8=$ PT－ $58 \mathrm{~mm} \quad 9=$ PT－ 64 mm
$\mathrm{C}=$ PT－73mm $\quad \mathrm{D}=$ PT－71mm
2＝Avisert type 2
7＝Lead wire（H）38mm
3＝Avisert type

3．Ordering Procedure

Resistors shall be marked with color coding Colors shall be in accordance with JIS C 0802
For $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{WS}, 0.4 \mathrm{WSS}(\pm 1 \%)$

$1^{\text {st }}$ Band		$2^{\text {nd }}$ Band		$3{ }^{\text {rd }}$ Band		4th Band			$5^{\text {th }}$ Band	
Black	$=0$	Black	$=0$	Black	$=0$	Black	$=$ Multiply by	$1\left(10^{\circ}\right)$	Violet	＝$\pm 0.1 \%$
Brown	$=1$	Brown	＝ 1	Brown	＝ 1	Brown	＝Multiply by	10 （10）	Blue	$= \pm 0.25 \%$
Red	$=2$	Red	$=2$	Red	$=2$	Red	$=$ Multiply by	$100\left(10^{2}\right)$	Green	＝$\pm 0.5 \%$
Orange	$=3$	Orange	$=3$	Orange	$=3$	Orange	＝Multiply by	$1,000\left(10^{3}\right)$	Brown	＝$\pm 1 \%$
Yellow	＝ 4	Yellow	$=4$	Yellow	$=4$	Yellow	$=$ Multiply by	$10,000\left(10^{4}\right)$		
Green	＝ 5	Green	$=5$	Green	$=5$	Green	$=$ Multiply by	$100,000\left(10^{5}\right)$		
Blue	$=6$	Blue	$=6$	Blue	$=6$	Blue	$=$ Multiply by	$1,000,000\left(10^{6}\right)$		
Violet	＝ 7	Violet	＝ 7	Violet	＝ 7	Violet	$=$ Multiply by	$10,000,000\left(10^{7}\right)$		
Gray	＝ 8	Gray	$=8$	Gray	$=8$	Gold	＝Multiply by	0.1 （10－1）		
White	$=9$	White	$=9$	White	$=9$	Silver	$=$ Multiply by	$0.01\left(10^{-2}\right)$		

uniohm

For $1 / 8 \mathrm{~W}, 1 / 6 \mathrm{~W}, 1 / 4 \mathrm{WS}, 0.4 \mathrm{WSS}(\pm 2 \%, \pm 5 \%)$

$1^{\text {st }}$ Band
Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Gray
White

Example：

METAL FILM FIXED RESISTORS	
WATT： $1 / 4 \mathrm{~W}$	VAL： 100Ω
Q＇TY： 5,000	TOL： 1%
LOT： 5021548	PPM： 50

METAL FILM FIXED RESISTORS

4．1 Label：
Label shall be marked with following items：
（1）Type and style
（2）Nominal resistance
（3）Resistance tolerance
（4）Quantity
（5）Lot number
（6）PPM

Other

Type	Dimension（mm）					Max Working Voltage	Max Overload Voltage	Dielectric Withstanding Voltage	
	D	L	d ± 0.05	$\mathbf{H} \pm 3$	PT			Flammability	Flame Retardant
MF 1／8W	1.9 ± 0.3	3.3 ± 0.3	0.45	28	52	200 V	400 V	400 V	200 V
MF 1／4WS	1.9 ± 0.3	3.3 ± 0.3	0.45	28	52	200 V	400 V	400 V	200 V
MF 0．4WSS	1.9 ± 0.5	3.3 ± 0.3	0.45	28	52	200 V	400 V	400 V	200 V
MF 1／4W	2.2 ± 0.3	6.5 ± 1.0	0.54	28	52	250 V	500 V	500 V	250 V
MF 1／2WS	2.2 ± 0.5	6.5 ± 1.0	0.54	28	52	250 V	500 V	／	250 V
MF 1／2W	3.5 ± 0.6	9.5 ± 1.0	0.54	28	52	350 V	700 V	700 V	250 V
MF 0．6WS	2.2 ± 0.5	6.5 ± 1.0	0.54	28	52	250 V	500 V	500 V	250 V
MF 1WS	3.5 ± 0.6	9.5 ± 1.0	0.54	28	52	350 V	700 V	700 V	250 V
MF 1W	4.5 ± 0.6	11.5 ± 1.0	0.70	25	52	500 V	1000 V	1000 V	350 V
MF 2WS	4.5 ± 0.6	11.5 ± 1.0	0.70	25	52	500 V	1000 V	1000 V	350 V
MF 2W	5.0 ± 0.6	15.5 ± 1.0	0.70	28	64	500 V	1000 V	1000 V	350 V
MF 3WS	5.0 ± 0.6	15.5 ± 1.0	0.70	28	64	500 V	1000 V	1000 V	350 V
MF 3W	6.0 ± 0.6	17.5 ± 1.0	0.75	28	64	500 V	1000 V	1000 V	500 V

uniohm

6．Resistance Range

Type		Standard				Special Order	
		Resistance Range	TCR PPM／	Tolerance	Resistance Range	TCR PPM／	
MF 1／8W MF 1／4WS MF 0．4WSS	$\pm 1 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 50	$\pm 0.25 \%$	$51.1 \Omega \sim 200 \mathrm{~K} \Omega$	± 15	
	$\pm 2 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 100	$\pm 0.5 \%$	$51.1 \Omega \sim 511 \mathrm{~K} \Omega$	± 25	
MF 1／4W MF 1／2WS MF 0．6WS	$\pm 5 \%$	$1 \Omega \sim 1 \mathrm{M} \Omega$	± 200	$\pm 0.5 \%$	$51.1 \Omega \sim 511 \mathrm{~K} \Omega$	± 50	
MF 1／2W MF 1WS	$\pm 1 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 50	$\pm 0.1 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 15	
	$\pm 2 \%$	$1 \Omega \sim 1 \mathrm{M} \Omega$	± 100	$\pm 0.25 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 25	
	$\pm 5 \%$	$1 \Omega \sim 1 \mathrm{M} \Omega$	± 200	$\pm 0.5 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 50	
MF 1W	$\pm 1 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 50	$\pm 0.1 \%$	$100 \Omega \sim 330 \mathrm{~K} \Omega$	± 15	
MF 2WS MF 2W MF 3WS	$\pm 2 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 100	$\pm 0.25 \%$	$51.1 \Omega \sim 511 \mathrm{~K} \Omega$	± 25	
MF 3W	$\pm 5 \%$	$1 \Omega \sim 1 \mathrm{M} \Omega$	± 200	$\pm 0.5 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 50	

7．Derating Curve

Power rating will change based on continuous load at ambient temperature from -55 to $155^{\circ} \mathrm{C}$ ． It is constant between -55 to $70^{\circ} \mathrm{C}$ ，and derate to zero when temperature rise from 70 to $155^{\circ} \mathrm{C}$ ．
Voltage rating：
Resistors shall have a rated direct－current（DC）continuous working voltage or an approximate sine－wave root－mean－square（RMS）alternating－current（AC）continuous working voltage at commercial－line
 frequency and waveform corresponding to the power rating，as determined from the following formula：

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

$$
\mathrm{RCWV}=\sqrt{P \times \mathrm{R}}
$$

Remark：RCWV：Rating Continuous Working Voltage（Volt．）P：power rating（Watt）R：nominal resistance（ Ω ） In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value． The overload voltage is 2.5 times RCWV or Max．Overload voltage whichever is lower．

8．Structure

No．	Name	Material
1	Basic Body	Rod type ceramics
2	Resistor	Metal Film
3	End Cap	Cold steel plated with copper／tin
4	Lead Wire	Tin solder coated copper wire
5	Joint	By Welding
		（1）．Celluloid paint
	Coating Insulated Resin Color ：Blue	$1 / 2 \mathrm{WS}:$ Deep Green 7
		Epoxy resin

uniohm

9．Performance Specification

Characteristic	Limits	Test Method （GB／T5729\＆JIS－C－5201\＆IEC60115－1）
Temperature Coefficient	Reference 6.0	4．8 Natural resistance changes per temp．Degree centigrade $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ R_{1} ：Resistance Value at room temperature（ t_{1} ）； R_{2} ：Resistance at test temperature（ t_{2} ） $\mathrm{t}_{1:}+25^{\circ} \mathrm{C}$ or specified room temperature t_{2} ：Test temperature $\left(-55^{\circ} \mathrm{C}\right.$ or $\left.125^{\circ} \mathrm{C}\right)$
Short－time overload	$\Delta \mathrm{R} / \mathrm{R} \leqslant \pm(0.5 \%+0.05 \Omega)$ ，with no evidence of mechanical damage	4．13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max．Overload Votage whichever less for 5 seconds．
Dielectric withstanding voltage	No evidence of flashover mechanical damage，arcing or insulation break down．	4．7 Resistors shall be clamped in the trough of a 90° metallic v－block and shall be tested at ac potential respectively specified in the above list for 60－70 seconds．
Pulse overload	$\Delta \mathrm{R} / \mathrm{R} \leqslant \pm(1 \%+0.05)$ ，with no evidence of mechanical damage	4．28 Resistance change after 10,000 cycles（ 1 second＂ON＂， 25 seconds＂OFF＂）at 4 times RCWV of RCWV or Max．Overload whichever less．
Resistance to soldering heat	$\Delta \mathrm{R} / \mathrm{R} \leqslant \pm(1 \%+0.05 \Omega)$ with no evidence of mechanical damage	4．18 Permanent resistance change when leads immersed to a point 2．0－ 2.5 mm from the body in $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ solder for 10 ± 1 seconds．
Resistance to solvent	No deterioration of protective coatings \＆markings	4．29 Specimens shall be immersed in a bath of IPA completely for a 5 ± 0.5 minutes using ultrasonic test equipment．
Terminal strength	No evidence of mechanical damage	4．16 Direct load： Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads． Twist test： Terminal leads shall be bent through 90° at a point of about 6 mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations．
Solderability	Coverage must be over 95\％．	4．17 The area covered with a new，smooth，clean，shiny and continuous surface free from concentrated pinholes． Test temp．Of solder： $245^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ Dwell time in solder：2～3seconds．
Rapid change of temperature	$\Delta \mathrm{R} / \mathrm{R} \leqslant \pm(1 \%+0.05 \Omega)$ with no evidence of mechanical damage	4.1930 min at $-55^{\circ} \mathrm{C}$ and 30 min at $155^{\circ} \mathrm{C}$ ； 100 cycles．
Load life in humidity	Normal type：$\quad \Delta R / R \leqslant \pm 1.5 \%$ ； flame retardant type：$\Delta R / R \leqslant \pm 5 \%$	7.9 resistance change after 1,000 hours（ 1.5 hours＂ON＂， 0.5 hour ＂OFF＂）at RCWV or Max．Working Voltage whichever less in a humidity test chamber controlled at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity．
Load life	Normal type：$\Delta R / R \leqslant \pm 1.5 \%$ ； flame retardant type：$\Delta \mathrm{R} / \mathrm{R} \leqslant \pm 5 \%$	4．25．1 Permanent resistance change after 1，000 hours operating at RCWV or Max．Working Voltage whichever less with duty cycle of 1.5 hours＂ON＂， 0.5 hour＂OFF＂at $70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ambient．
Low Temperature Storage	Normal type：$\Delta R / R \leqslant \pm 1.5 \%$ ； flame retardant type：$\Delta \mathrm{R} / \mathrm{R} \leqslant \pm 5 \%$	$\begin{aligned} & \text { IEC 60068-2-1 (Aa) } \\ & -55^{\circ} \mathrm{C} \text {, for } 2 \mathrm{H} . \end{aligned}$
High Temperature Exposure	Normal type：$\Delta R / R \leqslant \pm 1.5 \%$ ； flame retardant type：$\Delta R / R \leqslant \pm 5 \%$	MIL－STD－202 108A $155^{\circ} \mathrm{C}$ ，for 16 H ．

uniohm

10．Packing
10．1 Tapes in Box Packing

Part No．	O	P	Dimension of T／B（mm）			
MF 1／8W	52 ± 1	5 ± 0.3	$\mathrm{~A} \pm 5$	$\mathrm{~B} \pm 5$	$\mathrm{C} \pm 5$	Qty／Box
MF 1／4WS	52 ± 1	5 ± 0.3	75	70	255	$5,000 \mathrm{pcs}$
MF 0．4WSS	52 ± 1	5 ± 0.3	75	70	255	$5,000 \mathrm{pcs}$
MF 1／4W	52 ± 1	5 ± 0.3	75	98	$5,000 \mathrm{pcs}$	
MF 1／2WS	52 ± 1	5 ± 0.3	75	98	$5,000 \mathrm{pcs}$	
MF 0．6WS	52 ± 1	5 ± 0.3	75	98	$5,000 \mathrm{pcs}$	
MF 1／2W	52 ± 1	5 ± 0.3	75	45	$5,000 \mathrm{pcs}$	
MF 1WS	52 ± 1	5 ± 0.3	75	45	255	$1,000 \mathrm{pcs}$
MF 1W	52 ± 1	5 ± 0.3	86	82	255	$1,000 \mathrm{pcs}$
MF 2WS	52 ± 1	5 ± 0.3	86	82	255	$1,000 \mathrm{pcs}$
MF 2W	64 ± 5	10 ± 0.5	94	88	255	$1,000 \mathrm{pcs}$
MF 3WS	64 ± 5	10 ± 0.5	94	88	255	1000 pcs
MF 3W	64 ± 5	10 ± 0.5	90	88	255	1000 pcs

10．2 Tapes in Reel Packing

Dimension of Reel（mm）

Part No．	O	A	$\mathrm{W} \pm 5$	$\mathrm{H} \pm 5$	$\mathrm{L} \pm 5$	Qty／Box
MF 1／8W	52 ± 1	73 ± 2	85	295	293	5，000pcs
MF 1／4WS	52 ± 1	73 ± 2	85	295	293	5，000pcs
MF 0．4WSS	52 ± 1	73 ± 2	85	295	293	5，000pcs
MF 1／4W	52 ± 1	73 ± 2	85	295	293	5，000pcs
MF 1／2WS	52 ± 1	73 ± 2	85	295	293	5，000pcs
MF 1／2W	52 ± 1	73 ± 2	85	295	293	2，500pcs
MF 0．6WS	52 ± 1	73 ± 2	85	295	293	5，000pcs
MF 1WS	52 ± 1	73 ± 2	85	295	293	2，500pcs
MF 1W	52 ± 1	73 ± 2	85	295	293	2，500pcs
MF 2WS	52 ± 1	73 ± 2	85	295	293	2，500pcs
MF 2W	64 ± 5	80 ± 5	95	295	293	1，000pcs
MF 3WS	64 ± 5	80 ± 5	95	295	293	1，000pcs
MF 3W	64 ± 5	80 ± 5	95	295	293	1，000pcs

uniohm

10．3 Bulk in Box Packing

Dimension of Box（mm）

Part No．	$\mathrm{A} \pm 5$	$\mathrm{~B} \pm 5$	$\mathrm{C} \pm 5$	Qty／Box
MF 1／8W	140	80	240	$1,000 / 20,000 \mathrm{pcs}$
MF 1／4WS	140	80	240	$1,000 / 20,000 \mathrm{pcs}$
MF 0．4WSS	140	80	240	$1,000 / 20,000 \mathrm{pcs}$
MF 1／4W	140	80	240	$500 / 10,000 \mathrm{pcs}$
MF 1／2WS	140	80	240	$500 / 10,000 \mathrm{pcs}$
MF 1／2W	140	80	240	$250 / 5,000 \mathrm{pcs}$
MF 0．6WS	140	80	240	$500 / 10,000 \mathrm{pcs}$
MF 1WS	140	80	240	$250 / 5,000 \mathrm{pcs}$
MF 1W	140	80	240	$100 / 2,500 \mathrm{pcs}$
MF 2WS	140	80	240	$100 / 2,500 \mathrm{pcs}$
MF 2W	140	80	240	$100 / 1,500 \mathrm{pcs}$
MF 3WS	140	80	240	$100 / 1,500 \mathrm{pcs}$
MF 3W	140	80	240	$100 / 1,500 \mathrm{pcs}$

11．Note

11．1．UNI－ROYAL recommend products store in warehouse with temperature between 15 to $35^{\circ} \mathrm{C}$ under humidity between 25 to $75 \% \mathrm{RH}$ ．
Even under storage conditions recommended above，solder ability of products will be degraded stored over 1 year old．
11．2．Cartons must be placed in correct direction which indicated on carton，otherwise the reel or wire will be deformed．
11．3．Storage conditions as below are inappropriate：
a．Stored in high electrostatic environment
b．Stored in direct sunshine，rain，snow or condensation．
c．Exposed to sea wind or corrosive gases，such as $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{Br}$ etc．

12．Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	$1 \sim 7$	Mar．20，2018	Haiyan Chen	Nana Chen
2	Modify coating color	5	May．08，2018	Haiyan Chen	Nana Chen
3	Modify characteristic	$5 \sim 6$	Feb．18，2019	Haiyan Chen	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Oct．28，2022	Haiyan Chen	Yuhua Xu
5	1．Increased flame retardant withstand voltage value 2．Increased standard color code system	3	Aug．07，2023	Haiyan Chen	Yuhua Xu
6	Modify the dimension	Mar．25，2024	Haiyan Chen	Yuhua Xu	

© Uniroyal Electronics Global Co．，Ltd．All rights reserved．Specification herein will be changed at any time without prior notice

