DATA SHEET

Product Name Wire-wound Anti-Surge Fixed Resistors
Part Name KNPA Series File No. DIP-SP-012

Uniroyal Electronics Global Co., Ltd.

88\#, Longteng Road, Economic \& Technical Development Zone, Kunshan, Jiangsu, China

Tel	$+8651257631411 / 22 / 33$
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd
	Royal Technology (Thailand) Co., Ltd.

uniohm

1．Scope

1．1 This datasheet is the characteristics of Wire－wound Anti－Surge Fixed Resistors manufactured by UNI－ROYAL．
1．2 Excellent flame retardant coating
1．3 According to IEC 61000－4－5
1．4 Applies to electricity meters，home appliance and ballast
1．5 Compliant with RoHS directive．
1．6 Halogen free requirement．

2．Part No．System

The standard Part No．includes 14 digits with the following explanation：
2．1 Wire－Wound Fixed Resistors type，the $1^{\text {st }}$ to $3^{\text {rd }}$ digits are to indicate the product type and $4^{\text {th }}$ digit is the special feature．
Example：KNPA＝Wire－Wound Anti－Surge Fixed Resistors type．
$2.25^{\text {th }} \sim 6^{\text {th }}$ digits：
2．2．1 This is to indicate the wattage or power rating．To dieting the size and the numbers，
The following codes are used；and please refer to the following chart for detail：
W＝Normal Size；S＝Small Size；U＝Extra Small Size；＂ 1 ＂＂＇G＂to denotes＂ 1 ＂～＂ 16 ＂as
Hexadecimal：

$$
1 / 16 \mathrm{~W} \sim 1 / 2 \mathrm{~W}(<1 \mathrm{~W})
$$

Wattage	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$1 / 6$	$1 / 8$	$1 / 10$	$1 / 16$
Normal Size	W 2	W 3	W 4	W 5	W 6	W 8	WA	WG
Small Size	S 2	S 3	S 4	S 5	S 6	S 8	SA	SG

$1 \mathrm{~W} \sim 16 \mathrm{~W}(\geqq 1 \mathrm{~W})$

Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1 W	2 W	3 W	5 W	7 W	8 W	9 W	AW	FW
Small Size	1 S	2 S	3 S	5 S	7 S	8 S	9 S	AS	FS

2．2．2 For power rating less than 1 watt，the $5^{\text {th }}$ digit will be the letters W, S or U to represent the size required $\&$ the $6^{\text {th }}$ digit will be a number or a letter code．

Example：WA＝1／10W

2．2．3 For power of 1 watt to 16 watt，the $5^{\text {th }}$ digit will be a number or a letter code and the $6^{\text {th }}$ digit will be the letters of W or S ． Example：AS $=10 \mathrm{~W}-\mathrm{S} ; 3 \mathrm{~S}=3 \mathrm{~W}-\mathrm{S}$
2．3 The $7^{\text {th }}$ digit is to denote the Resistance Tolerance．The following letter code is to be used for indicating the standard Resistance Tolerance．
$\mathrm{F}= \pm 1 \% \quad \mathrm{G}= \pm 2 \% \quad \mathrm{~J}= \pm 5 \% \quad \mathrm{~K}= \pm 10 \%$
2．4 The $8^{\text {th }}$ to $11^{\text {th }}$ digits is to denote the Resistance Value．
2．4．1 For the standard resistance values of 5% series，the 8 th digit is＂ 0 ＂，the 9 th $\& 10^{\text {th }}$ digits are to denote the significant figures of the resistance and the $11^{\text {th }}$ digit is the number of zeros following．；
2．4．2 The following number s and the letter codes are to be used to indicate the number of zeros in the $11^{\text {th }}$ digit：

$$
\begin{array}{llllll}
0=10^{0} & 1=10^{1} & 2=10^{2} & 3=10^{3} & 4=10^{4} & 5=10^{5} \\
6=10^{6} & \mathrm{~J}=10^{-1} & \mathrm{~K}=10^{-2} & \mathrm{~L}=10^{-3} & \mathrm{M}=10^{-4}
\end{array}
$$

2．4．3 The $12^{\text {th }}, 13^{\text {th }} \& 14^{\text {th }}$ digits．
The $12^{\text {th }}$ digit is to denote the Packaging Type with the following codes：

$$
\mathrm{A}=\text { Tape } / \mathrm{Box}(\text { Ammo pack }) \quad \mathrm{B}=\mathrm{Bulk} / \mathrm{Box}
$$

$$
\mathrm{T}=\text { Tape/Reel } \quad \mathrm{P}=\text { Tape/Box of PT-26 products }
$$

2．4．4 The $13^{\text {th }}$ digit is normally to indicate the Packing Quantity of Tape／Box \＆Tape／Reel packaging types．The following letter code or number code is to be used for some packing quantities：

$$
\mathrm{A}=500 \mathrm{pcs} \quad 1=1000 \mathrm{pcs} \quad 2=2000 \mathrm{pcs} \quad 5=5000 \mathrm{pcs}
$$

2．4．5 For some items，the $14^{\text {th }}$ digit alone can use to denote special features of additional information with the following codes：
$0=$ NIL $\quad \mathrm{P}=$ Panasert type $\quad 0=\mathrm{NIL} \quad 1=$ Avisert type $1 \quad 2=$ Avisert type 2
3＝Avisert type 3

3．Ordering Procedure

（Example：KNPA 3WS $\pm 5 \% 12 \Omega$ T／B－1000）

4．Color Code
Resistors shall be marked with color coding
Colors shall be in accordance with JIS C 0802

4．3 Label：
Label shall be marked with following items：
（1）Type and style
（2）Nominal resistance
（3）Resistance tolerance
（4）Quantity
（5）Lot number
（6）PPM

Black	＝Multiply by	$1\left(10^{\circ}\right)$
Brown	＝Multiply by	10 （10）
Red	＝Multiply by	$100\left(10^{2}\right)$
Orange	＝Multiply by	$1,000\left(10^{3}\right)$
Yellow	＝Multiply by	10,000 （104）
Green	＝Multiply by	$100,000\left(10^{5}\right)$
Blue	＝Multiply by	1，000，000（10）
Violet	＝Multiply by	$10,000,000\left(10^{7}\right)$
Gold	＝Multiply by	0.1 （100）
Silver	＝Multiply by	$0.01\left(10^{-2}\right)$

Example：

Wire－wound Anti－Surge Fixed Resistors	
WATT ：8W	VAL： 22Ω
Q＇TY： 25	TOL： 5%
LOT： 7021528	PPM：

5．Ratings \＆Dimension

5．1 Dimension：

Type	Dimension（mm）					Resistance Range	Tolerance
	$\mathrm{D} \pm 1$	$\mathrm{L} \pm 1$	$\mathrm{d} \pm 0.05$	$\mathrm{H} \pm 3$	PT		
KNPA 1／2W，1WS	3.5	9.5	0.54	28	52	$10 \Omega \sim 820 \Omega$	$\begin{gathered} \pm 1 \% \\ \pm 2 \% \\ \pm 5 \% \\ \pm 10 \% \end{gathered}$
KNPA 1W，2WS	4.5	11.5	0.70	25	52	$10 \Omega \sim 1.2 \mathrm{~K} \Omega$	
KNPA 2W，3WS	5.5	15.5	0.70	28	64	$10 \Omega \sim 3.0 \mathrm{~K} \Omega$	
KNPA 3W，5WS	6.5	17.5	0.75	28	64	$10 \Omega \sim 3.9 \mathrm{~K} \Omega$	
KNPA 5W，7WS	8.5	24.5	0.75	38	90	$10 \Omega \sim 5.6 \mathrm{~K} \Omega$	
KNPA 7W，8WS	8.5	29.5	0.75	38	B／B	$10 \Omega \sim 8.2 \mathrm{~K} \Omega$	
KNPA 8W，9WS	8.5	39.5	1.00	38	B／B	$10 \Omega \sim 10 \mathrm{~K} \Omega$	
KNPA 9W，AS	8.5	52.5	1.00	38	B／B	$10 \Omega \sim 15 \mathrm{~K} \Omega$	

6．Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from $-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．For temperature in excess of $70^{\circ} \mathrm{C}$ ，the load shall be derate as shown in figure 1

Figure 1

6．1 Voltage rating：
Resistors shall have a rated direct－current（DC）continuous working voltage or an approximate sine－wave root－mean－square（RMS） alternating－current（AC）continuous working voltage at commercial－line frequency and waveform corresponding to the power rating，as determined from the following formula：
$R C W V=\sqrt{P \times R}$
Where：RCWV＝rated dc or RMS ac continuous working voltage at commercial－line frequency and waveform（VOLT．）
$\mathrm{P}=$ power rating（WATT．）
$\mathrm{R}=$ nominal resistance (OHM)

7．Pulses Energy Curve

8．1．2／50us Pulses Voltage Curve

9．Structure

No．	Name	Raw materials
1	Basic body	Rod Type Ceramics
2	Resistor	Alloy
3	End cap	Steel（Tin Plated iron Surface）
4	Lead wire	Tin solder coated copper wire
5	Joint	By welding
6	Coating	Normal size \＆Insulated Non－Flame Paint Color：Deep Green（Normal size） Light Green（small size）
7	Marking	Epoxy Resin

10．Performance Specification

Characteristic	Limits	Test Methods （GB／T5729\＆JIS－C－5201\＆IEC60115－1）
Temperature Coefficient	$\pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	4．8 Natural resistance changes per temp．Degree centigrade $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ R_{1} ：Resistance Value at room temperature（ t_{1} ）； R_{2} ：Resistance at test temperature（ t_{2} ） $\mathrm{t}_{1:}+25^{\circ} \mathrm{C}$ or specified room temperature t_{2} ：Test temperature $\left(-55^{\circ} \mathrm{C}\right.$ or $125^{\circ} \mathrm{C}$ ）
Short－Time Overload	Resistance change rate must be in $\pm(2 \%+0.05 \Omega)$ Max ，and no mechanical damage．	4．13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max．Overload Votage whichever less for 5 seconds．
Terminal strength	No evidence of mechanical damage	4．16 Direct load： Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads． Twist test： Terminal leads shall be bent through 90° at a point of about 6 mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations．

Resistance to soldering heat	Resistance change rate must be in $\pm(1 \%+0.05 \Omega)$ ，and no mechanical damage．	4．18 Permanent resistance change when leads immersed to a point $2.0-2.5 \mathrm{~mm}$ from the body in $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ solder for 10 ± 1 seconds．
Solderability	95\％Coverage Min．	4．17 The area covered with a new，smooth，clean，shiny and continuous surface free from concentrated pinholes． Temperature of solder： $245^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ Dwell time in solder：2～3seconds．
Rapid change of temperature	Resistance change rate must be in $\pm(2 \%+0.05 \Omega)$ ，and no mechanical damage．	4.1930 min at $-55^{\circ} \mathrm{C}$ and 30 min at $155^{\circ} \mathrm{C} ; 100$ cycles．
$\begin{gathered} \text { Humidity } \\ \text { (steady state) } \end{gathered}$	Resistance change rate must be in \pm $(2 \%+0.05 \Omega)$ ，and no mechanical damage．	4．24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40 \pm 2^{\circ} \mathrm{C}$ and $90-95 \%$ relative humidity，
Load life in humidity	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	7．9 Resistance change after 1000 hours（ 1.5 hours＂ON＂， 0.5 hours＂OFF＂）at RCWV or Max．Working Voltage whichever less in a humidity test chamber controlled at $40 \pm 2^{\circ} \mathrm{C}$ and $93 \% \pm$ $3 \% \mathrm{RH}$ ．
Surge Immunity	Resistance change rate is：$\pm(5 \%+0.05 \Omega)$ Max	Surge voltageas per the $1.2 \mu \mathrm{~s} / 50 \mu \mathrm{~s}$ exponential open circuit voltage waveform according to IEC 61000－4－5 standard as shown below： Front time： Time to half－value： $\begin{aligned} & T_{1}=1.67 \times T=1.2 \\ & T_{2}=50 \mu \mathrm{~s} \pm 20 \%\end{aligned}$
Resistance to solvent	No deterioration of protective coatings \＆ markings	4．29 Specimens shall be immersed in a bath of trichloroethylene completely for 3 min ．With ultrasonic
Load life	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	4．25．1 Permanent Resistance change after 1000 hours operating at RCWV or Max．Working Voltage whichever less with duty cycle of 1.5 hours＂ON＂， 0.5 hour＂OFF＂at $70 \pm 2^{\circ} \mathrm{C}$ ambient．
Low Temperature Storage	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	IEC 60068－2－1（Aa） Lower limit temperature，for 2 H ．
High Temperature Exposure	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	MIL－STD－202 108A Upper limit temperature ，for 16 H ．

uniohm
alnedil

11．Packing
11．1 Tapes in Box Packing：

Part No．	O	P	$\mathrm{A} \pm 5$	$\mathrm{~B} \pm 5$	$\mathrm{C} \pm 5$	Dimension of T／B（mm）
KNPA 1／2W	52 ± 1	5 ± 0.3	75	45	255	$1,000 \mathrm{pcs}$
KNPA 1WS	52 ± 1	5 ± 0.3	75	45	255	$1,000 \mathrm{pcs}$
KNPA 1W	52 ± 1	5 ± 0.3	86	82	255	$1,000 \mathrm{pcs}$
KNPA 2WS	52 ± 1	5 ± 0.3	86	82	255	$1,000 \mathrm{pcs}$
KNPA 2W	64 ± 5	10 ± 0.5	90	119	255	$1,000 \mathrm{pcs}$
KNPA 3WS	64 ± 5	10 ± 0.5	90	119	255	$1,000 \mathrm{pcs}$
KNPA 3W	64 ± 5	10 ± 0.5	90	88	255	500 pcs
KNPA 5WS	64 ± 5	10 ± 0.5	90	88	255	500 pcs
KNPA 5W	90 ± 5	10 ± 0.5	115	124	500	500 pcs
KNPA 7WS	90 ± 5	10 ± 0.5	115	124	500	500 pcs

11．2 Tapes in Reel Packing：

Dimension of Reel（mm）

Part No．	O	A	$\mathrm{W} \pm 5$	$\mathrm{H} \pm 5$	$\mathrm{~L} \pm 5$	Qty／Box
KNPA 1／2W	52 ± 1	73 ± 2	85	295	293	$2,500 \mathrm{pcs}$
KNPA 1WS	52 ± 1	73 ± 2	85	295	293	$2,500 \mathrm{pcs}$
KNPA 1W	52 ± 1	73 ± 2	85	295	293	$2,500 \mathrm{pcs}$
KNPA 2WS	52 ± 1	73 ± 2	85	295	293	$2,500 \mathrm{pcs}$
KNPA 2W	64 ± 5	80 ± 5	95	295	293	$1,000 \mathrm{pcs}$
KNPA 3WS	64 ± 5	80 ± 5	95	295	293	$1,000 \mathrm{pcs}$
KNPA 3W	64 ± 5	80 ± 5	95	295	293	$1,000 \mathrm{pcs}$
KNPA 5WS	64 ± 5	80 ± 5	95	295	293	$1,000 \mathrm{pcs}$
KNPA 5W	90 ± 5	115 ± 5	121	310	310	700 pcs
KNPA 7WS	90 ± 5	115 ± 5	121	310	310	700 pcs

uniohm
urioram

11．3 Bulk in Box Packing：

Part No．	$\mathrm{A} \pm 5$	$\mathrm{~B} \pm 5$	$\mathrm{C} \pm 5$
KNPA 1／2W	140	80	240
KNPA 1WS	140	80	240
KNPA 1W	140	80	240
KNPA 2WS	140	80	240
KNPA 2W	140	80	240
KNPA 3WS	140	80	$240 / 5,000 \mathrm{pcs}$
KNPA 3W	140	80	240
KNPA 5WS	140	80	240
KNPA 5W	140	80	240
KNPA 7WS	140	80	$100 / 2,500 \mathrm{pcs}$
KNPA 7W	140	80	240
KNPA 8WS	140	80	240
KNPA 8W	140	80	240
KNPA 9WS	140	80	240
KNPA 9W	140	80	240
KNPA 10WS	140	80	240

12．Note
12．1．UNI－ROYAL recommend products store in warehouse with temperature between 15 to $35^{\circ} \mathrm{C}$ under humidity between 25 to 75% RH．
Even under storage conditions recommended above，solder ability of products will be degraded stored over 1 year old．
12．2．Cartons must be placed in correct direction which indicated on carton，otherwise the reel or wire will be deformed．
12．3．Storage conditions as below are inappropriate：
a．Stored in high electrostatic environment
b．Stored in direct sunshine，rain，snow or condensation．
c．Exposed to sea wind or corrosive gases，such as $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{Br}$ etc．

13．Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1～8	Mar．20， 2018	Haiyan Chen	Nana Chen
2	1．Modify the Derating Curve 2．Add the Pulses Energy Curve and Pulses Voltage Curve 3．Modify characteristic	$\begin{aligned} & \hline 4 \\ & 5 \\ & 6 \sim 7 \\ & \hline \end{aligned}$	Feb．23， 2019	Haiyan Chen	Yuhua Xu
3	Modify the Paint color	5	Jun．24， 2019	Haiyan Chen	Yuhua Xu
4	Modify the size of 8 W to 10 WS wires from＂ 0.75 ＂to＂1．00＂	4	Mar．15， 2022	Haiyan Chen	Yuhua Xu
5	Modify the temperature coefficient test conditions	6	Oct．28， 2022	Haiyan Chen	Yuhua Xu
6	1．Modify the marking identifier 2．Cancel Surge Rating	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Jul．27， 2023	Haiyan Chen	Yuhua Xu
7	1．Increased standard color code system 2．Add the 1% tolerance	$\begin{aligned} & 3 \\ & 3 \sim 4 \end{aligned}$	Apr．01， 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co．，Ltd．All rights reserved．Specification herein will be changed at any time without prior notice

