

DATA SHEET

Product Name High-Power Thick Film Chip Resistors

Part Name HP Series

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of High Power Thick Film Chip Resistors manufactured by UNI-ROYAL.
- 1.2 High power standard size
- 1.3 Suitable for both wave & re-flow soldering
- 1.4 Application: AV adapters, LCD back-light, camera strobe ect.

2. Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: HP02、HP03、HP05、HP06、HP07、HP10、HP11、HP12

2.2 5th~6th codes: Power rating.

E.g.: W=Normal Size		"1~	G" = "1~1	6"						
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

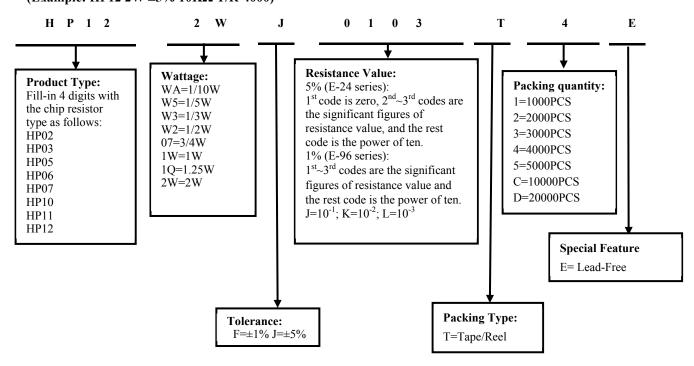
If power rating is equal or lower than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

E.g.: WA=1/10W W4=1/4W

- 2.3 7^{th} code: Tolerance. E.g.: $D=\pm 0.5\%$ $F=\pm 1\%$ $G=\pm 2\%$ $J=\pm 5\%$ $K=\pm 10\%$
- 2.4 8th~11th codes: Resistance Value.
- 2.4.1 If value belongs to standard value of E-24 series, the 8th code is zero, 9th~10th codes are the significant figures of resistance value, and the 11th code is the power of ten.
- 2.4.2 If value belongs to standard value of E-96 series, the $8^{th} \sim 10^{th}$ codes are the significant figures of resistance value, and the 11^{th} code is the power of ten.
- 2.4.3 11th codes listed as following:

$$0=10^{0}$$
 $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

- 2.5 12th~14th codes.
- 2.5.1 12th code: Packaging Type. E.g.: B = Bulk / Box T=Tape/Reel
- 2.5.2 13th code: Standard Packing Quantity.


4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: HP12 2W $\pm 5\%$ 10K Ω T/R-4000)

4. Marking

- 4.1 For HP02 size. Due to the very small size of the resistor'sbody, there is no marking on the body.
- 4.2 Normally, the making of 0Ω HP03, 0Ω HP05, 0Ω HP06, 0Ω HP07 , 0Ω HP10, 0Ω HP11 , 0Ω HP12 resistors as following
- 4.3 $\pm 5\%$ tolerance products (E-24 series):

3 codes.

1st~2nd codes are the significant figures of resistance value, and the rest code is the power of ten.

4.4 $\pm 1\%$ tolerance products (E-96 series): 4 codes.

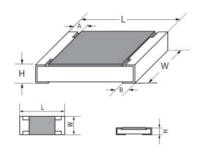
 $1^{st} \sim 3^{rd}$ codes are the significant figures of resistance value, and the rest code is the power of ten.

Letter "R" in mark means decimal point.

4.5 More than HP05 specifications (including) 4 digits, Product below 1Ω , show as following, the first digit Is "R" which as decimal point.

 $0 \rightarrow 0\Omega$

 $333 \rightarrow 33K\Omega$


 $2701 \rightarrow 2.7 \mathrm{K}\Omega$

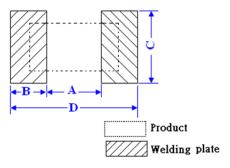
 $R300 \rightarrow 0.3\Omega$

5. <u>Dimension</u>

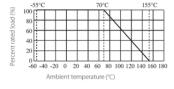
True	Dimension(mm	1)			
Туре	L	W	Н	A	В
HP02(0402)	1.00±0.10	0.50 ± 0.05	0.35±0.05	0.20±0.10	0.25±0.10
HP03(0603)	1.60±0.10	0.80 ± 0.10	0.45±0.10	0.30±0.20	0.30±0.20
HP05(0805)	2.00±0.15	1.25+0.15/ -0.10	0.55±0.10	0.40±0.20	0.40±0.20
HP06(1206)	3.10±0.15	1.55+0.15/-0.10	0.55±0.10	0.45±0.20	0.45±0.20
HP07(1210)	3.10±0.10	2.60±0.20	0.55±0.10	0.50±0.25	0.50±0.20
HP10(2010)	5.00±0.10	2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20
HP11(1812)	4.50±0.20	3.20±0.20	0.55±0.20	0.50±0.20	0.50±0.20
HP12(2512)	6.35±0.10	3.20±0.20	0.55±0.10	0.60±0.25	0.50±0.20

6. Resistance Range

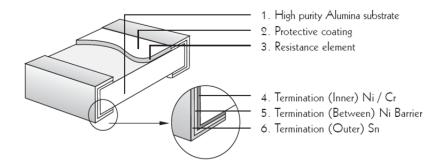
esistance R	ange							
Туре	Size	70℃ Power	Resistance Range of 1% & 5%	Max. Working Voltage	Max. Overload Voltage	Dielectric withstanding Voltage	Operating Temperature	
11000	0.402	1/10337	1Ω~10M	50V	100V	100V	55°C 155°C	
HP02	0402	1/10W -	0Ω		Rmax=10mΩ, Imax=3A		55°C~155°C	
HP03	0603	1/5W/	0.1Ω~10M	75V	150V	300V	-55°C~155°C	
	0603	1/5W -	0Ω		Rmax=8m Ω , Imax=5A		-55 C~155 C	
HP05	0805	1/3W -	$0.01\Omega\sim10M$	150V	300V	500V	-55℃~155℃	
пРОЗ	0803	1/3 W -	0Ω		Rmax=5m Ω , Imax=6A		-33 C~133 C	
HP06	1206	1/2W -	$0.01\Omega\sim10M$	200V	400V	500V	-55℃~155℃	
ПГОО	1200	1/ Z VV	0Ω		Rmax=5m Ω , Imax=10A		-55 C~155 C	
HP07	1210	3/4W -	$0.1\Omega\sim10M$	200V	500V	500V	-55℃~155℃	
пР07	1210	3/4 W	Ω		Rmax= $4m\Omega$, Imax= $12A$		-55 C~155 C	
HP10	2010	1377 —	$0.01\Omega\sim10M$	200V	500V	500V	-55°C~155°C	
HP10	2010	1W -	0Ω		Rmax=5m Ω , Imax=12A		-33 C~133 C	
IID11	1012	1.25W -	0.1Ω~10M	200V	500V	500V 500V		
HP11	1812	1.25W -	0Ω		Rmax=5m Ω , Imax=12A		-55℃~155℃	
HP12	2512	2111	$0.01\Omega\sim10M$	250V	500V	500V	-55°C~155°C	
ПР12	2312	2W -	0Ω		Rmax=5m Ω , Imax=16A		-33 C~133 C	



7. Soldering pad size recommended


Truns		Dimension(mm)								
Type	A	В	C	D						
HP02	0.5 ± 0.05	0.5 ± 0.05	0.6 ± 0.05	1.5±0.05						
HP03	0.8 ± 0.05	0.8 ± 0.05	0.9 ± 0.05	2.4 ± 0.05						
HP05	1.0 ± 0.1	1±0.1	1.4 ± 0.1	3±0.1						
HP06	2.0±0.1	1.1±0.1	1.8±0.1	4.2±0.1						
HP07	2.0±0.1	1.1±0.1	2.9±0.1	4.2±0.1						
HP10	3.6±0.1	1.4±0.1	3±0.1	6.4±0.1						
HP11	3.0±0.1	1.4±0.1	3.7±0.1	5.8±0.1						
HP12	4.9±0.1	1.35±0.1	3.7±0.1	7.6±0.1						

8. Derating Curve


Power rating will change based on continuous load at ambient temperature from -55 to 155 $^{\circ}$ C. It is constant between -55 to 70 $^{\circ}$ C, and derate to zero when temperature rise from 70 to 155 $^{\circ}$ C. Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula: $RCWV = \sqrt{P \times R}$

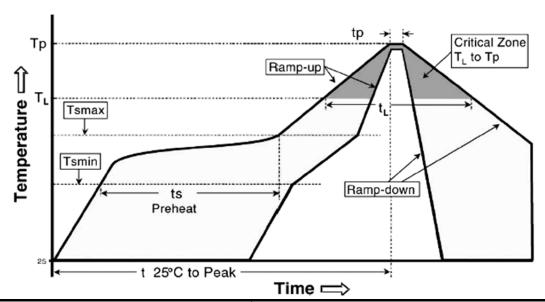
Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance (Ω) In no case, the rated DC or RMS AC continuous working voltage must be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.

9. Structure

10. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
	HP02: $1\Omega \le R \le 10\Omega$: ±400 PPM/°C $10\Omega < R \le 100\Omega$: ±200 PPM/°C $100\Omega < R \le 10M$: ±100 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade R ₂ -R ₁			
Temperature Coefficient	HP03: $0.1\Omega \le R < 0.2\Omega$: ±200PPM/°C $0.2\Omega \le R \le 10M$: ±100 PPM/°C	R ₁ : Resistance Value at room temperature (t ₁); R ₁ : Resistance at test temperature (Upper limit temperature or Lower limit temperature) t _{1:} +25°C or specified room temperature t _{2:} Upper limit temperature or Lower limit temperature temperature			
	HP05: 10mΩ≤R≤15mΩ:±800ppm/°C 15mΩ <r≤25mω: °c<br="" ±600ppm="">25mΩ<r≤50mω: °c<br="" ±400ppm="">50mΩ<r<0.1ω: °c<br="" ±200ppm="">0.1Ω≤R≤10M: ±100ppm/°C</r<0.1ω:></r≤50mω:></r≤25mω:>				

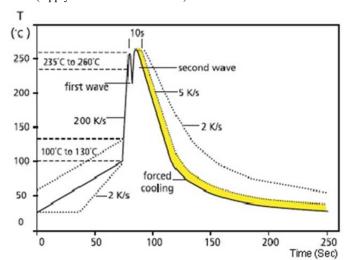
		<15mΩ: ±700 ppm/°C <30mΩ: ±400 ppm/°C <50mΩ: ±300 ppm/°C <0.1Ω: ±150 ppm/°C :10M:±100 ppm/°C <15mΩ: 0~+800 ppm/°C <50mΩ: 0~+600 ppm/°C <10M: ±100 ppm/°C				
	50mΩ <r< td=""><td>≤50mΩ: 0~+400ppm/°C ≤10M: ±100ppm/°C</td><td></td></r<>	≤50mΩ: 0~+400ppm/°C ≤10M: ±100ppm/°C				
	HP07、I	HP11: ±100PPM/℃				
Short-time overload	±5% ±1%	$\pm (2.0\% + 0.1\Omega)$ $\pm (1.0\% + 0.1\Omega)$	4.13 Permanent resistance change after the application of 2.5 times RCWV for 5 seconds.			
Dielectric withstanding voltage		nce of flashover mechanical arcing or insulation breaks done.	4.7 Clamped in the trough of a 90°C metallic v-block and shall be tested at ac potential respectively specified in the type for 60 70 seconds			
Terminal bending	±(1.0%+	0.05Ω) Max	4.33 Twist of test board: $Y/X = 3/90$ mm for 60seconds			
Soldering heat		ce change rate must be in 0.05Ω) Max	4.18 Dipping the resistor into a solder bath having a temperature of 260 ℃±5 ℃ and hold it for 10±1 seconds			
Solderability	Coverage	e must be over 95%.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder:245±3°C; Dwell time in solder: 2~3 seconds.			
Rapid change of	±5%	±(1.0%+0.05Ω)	4.19 30 min at lower limit temperature and 30 min at upper limit			
temperature	±1%	±(0.5%+0.05Ω)	temperature , 100 cycles			
Humidity	±5%	±(3.0%+0.1Ω)	4.24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at			
(steady state)	±1%	±(0.5%+0.1Ω)	40±2℃ and 90-95% relative humidity,			
Load life	±5%	±(3.0%+0.1Ω)	7.9 Resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity chamber controlled at 40			
in humidity	±1%	±(1.0%+0.1Ω)	°C±2°C and 90-95% relative humidity.			
Load life	±5%	±(3.0%+0.1Ω)	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70			
	±1%	±(1.0%+0.1Ω)	°C±2°C ambient.			
Low	±5%	±(3.0%+0.1Ω)	4.22.4 Lower limit temperature (for 21)			
Temperature Storage	±1%	±(1.0%+0.1Ω)	4.23.4 Lower limit temperature, for 2H.			
High	±5%	±(3.0%+0.1Ω)	4.22.2. Upper limit temperature + for 1000H			
Temperature Exposure	±1%	±(1.0%+0.1Ω)	4.23.2 Upper limit temperature , for 1000H.			
Leaching	No visibl	e damage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C.			



11. Soldering Condition

(This is for recommendation, please customer perform adjustment according to actual application)

11.1 Recommend Reflow Soldering Profile: (solder: Sn96.5 / Ag3 / Cu0.5)

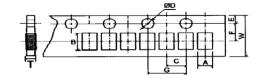


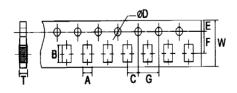
Profile Feature	Lead (Pb)-Free solder
Preheat:	
Temperature Min (Ts _{min})	150℃
Temperature Max (Ts _{max})	200℃
Time (Ts _{min} to Ts _{max}) (ts)	60 -120 seconds
Average ramp-up rate:	
(Ts max to Tp)	3°C / second max.
Time maintained above :	
Temperature (T_L)	217℃
Time (t _L)	60-150 seconds
Peak Temperature (Tp)	260℃
Time within $^{+0}_{-5}$ °C of actual peak Temperature (tp) ²	10 seconds
Ramp-own Rate	6℃/second max.
Time 25°C to Peak Temperature	8mimutes max.

Allowed Re-flow times: 2 times

Remark: To avoid discoloration phenomena of chip on terminal electrodes, please use N2 Re-flow furnace.

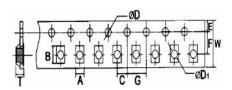
11.2 Recommend Wave Soldering Profile: (Apply to 0603 and above size)



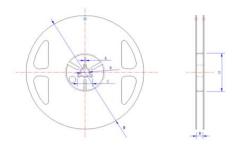

12. Packing

12.1 Dimension of Paper Taping: (Unit: mm)

Туре	A ± 0.1	B ± 0.1	C ±0.05	ΦD ^{+0.1}	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.05
HP02	0.65	1.20	2.00	1.50	1.75	3.5	4.00	8.0	0.42



TYPE	A ± 0.2	B ± 0.2	C ± 0.05	$\Phi D_{-0}^{+0.1}$	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T ±0.10
HP03	1.10	1.90	2.00	1.50	1.75	3.5	4.00	8.00	0.67
HP05	1.65	2.40	2.00	1.50	1.75	3.5	4.00	8.00	0.81
HP06	2.00	3.60	2.00	1.50	1.75	3.5	4.00	8.00	0.81
HP07	2.80	3.50	2.00	1.50	1.75	3.5	4.00	8.00	0.75


12.2 Dimension of plastic taping: (Unit: mm)

Type	A ±0.2	B ±0.2	C ±0.05	$\Phi D_{-0}^{+0.1}$	ФD1 ^{+0.25}	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
HP10	2.9	5.6	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0
HP11	3.5	4.8	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0
HP12	3.5	6.7	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0

12.3 Dimension of Reel: (Unit: mm)

Type	Taping	Qty/Reel	A±0.5	B±0.5	C±0.5	ΦD±1	ΦL±2	W±1
HP02	Paper	10,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HP03	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HP05	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HP06	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HP07	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
HP10	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8
HP11	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8
HP12	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8

13. <u>Note</u>

- 13.1. UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity:25%~75%.
 - (Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 13.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
 - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 13.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine \ rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₃ NH₃, SO₂, NO₂.

14. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~8	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.12, 2019	Haiyan Chen	Xu Yuhua
3	Modify the High Temperature Exposure conditions	5	July.29, 2019	Haiyan Chen	Yuhua Xu
4	Modify the HP12 50mΩ <r≤10m Temperature Coefficient</r≤10m 	5	Nov.15, 2019	Haiyan Chen	Yuhua Xu
5	Modify the reflow curve and add the wave soldering curve	6	Apr.29, 2020	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice

Apr.29,2020 V.5 www. uni-royal.cn Page 7/7