

DATA SHEET

Product Name Ultra High Power Thick Film Chip Resistors

Part Name SP Series File No. SMD-SP-004

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. <u>Scope</u>

- 1.1 This datasheet is the characteristics of Ultra High Power Thick Film Chip Resistors manufactured by UNI-ROYAL.
- 1.2 High power rating up to 6 watts
- 1.3 Suitable for both wave & re-flow soldering
- 1.4 Application LED lamps, Intelligent home appliances, Medical equipment, Kinds of industrial control devices & Industrial supplies

2. Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: SP10、SP12、SP17、SP20、SP27

2.2 $5^{\text{th}} \sim 6^{\text{th}}$ codes: Power rating.

E.g.: W=Normal Siz	e	``1~G`` = ``1~16``					
Wattage	2	3	4	5	6		
Normal Size	2W	3W	4W	5W	6W		

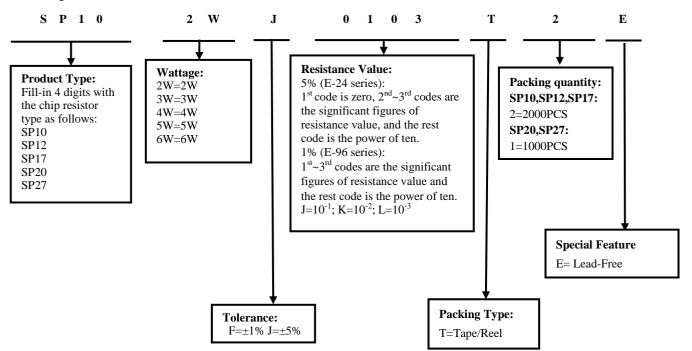
For power rating of 1W to 16W, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U. E.g.:2W=2W

2.3 7^{th} code: Tolerance. E.g.: D=±0.5% F=±1% G=±2% J=±5% K=±10%

2.4 8th~11th codes: Resistance Value.

2.4.1 If value belongs to standard value of E-24 series, the 8^{th} code is zero, $9^{th} \sim 10^{th}$ codes are the significant figures of resistance value, and the 11^{th} code is the power of ten.

2.4.2 If value belongs to standard value of E-96 series, the 8th~10th codes are the significant figures of resistance value, and the 11th code is the power of ten.


2.4.311th codes listed as following:

 $0 = 10^0 \quad 1 = 10^1$ $2 = 10^{2}$ $3 = 10^3$ $4 = 10^4$ $5 = 10^5$ $6 = 10^{6}$ J=10⁻¹ K=10⁻² L=10⁻³ M=10⁻⁴ 2.5 $12^{\text{th}} \sim 14^{\text{th}}$ codes. 2.5.1 12th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13th code: Standard Packing Quantity. 4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: SP10 2W $\pm 5\%$ 10K Ω T/R-2000)

Ultra High Power Thick Film Chip Resistors

333

2701

 $333 \rightarrow 33 \mathrm{K}\Omega$

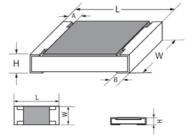
 $2701 \rightarrow 2.7 \mathrm{K}\Omega$

4. Marking

4.1 \pm 5% tolerance products (E-24 series):

3 codes.

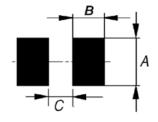
 $1^{st} \sim 2^{nd}$ codes are the significant figures of resistance value, and the rest code is the power of ten.


4.2 \pm 1% tolerance products (E-96 series):

4 codes.

1st~3rd codes are the significant figures of resistance value, and the rest code is the power of ten. Letter "R" in mark means decimal point.

5. Dimension


T		Dimens	sion(mm)		
Туре	L	W	Н	А	В
SP10(2010)	5.00±0.10	2.50 ± 0.15	1.10 ± 0.10	0.60±0.25	0.50 ± 0.20
SP12(2512)	6.35±0.10	3.20±0.15	1.10±0.10	0.60±0.25	1.80 ± 0.20
SP17(2817)	7.10 ± 0.20	4.20±0.20	1.10 ± 0.10	0.60±0.20	1.80±0.20
SP20(4320)	11.00±0.30	5.00 ± 0.25	1.10 ± 0.10	0.80 ± 0.20	2.40±0.20
SP27(4527)	11.60±0.30	6.85 ± 0.25	1.10 ± 0.10	1.00 ± 0.20	2.50±0.20

6. <u>Resistance Range</u>

Туре	Size	Power Rating	Resistance Range of 1% & 5%	Max. Working Voltage	Max. Overload Voltage	Dielectric withstanding Voltage	Operating Temperature
SP10	2010(5025)	2W	1Ω~10M	200V	500V	500V	-55℃~155℃
SP12	2512(6432)	3W	1Ω~10M	250V	500V	500V	-55℃~155℃
SP17	2817(7142)	4W	1Ω~10M	250V	500V	500V	-55℃~155℃
SP20	4320(1150)	5W	1Ω~10M	300V	600V	600V	-55℃~155℃
SP27	4527(1267)	6W	1Ω~10M	300V	600V	600V	-55℃~155℃

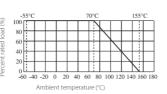
7. Soldering pad size recommended

Size	А	В	С
SP10	3.00	2.00	3.90
SP12	3.70	3.30	2.70
SP17	4.70	3.30	3.40
SP20	5.50	3.90	6.10
SP27	7.20	4.00	6.50

4 layers PCB specification:

1. Outside 2 layers (Top and Bottom) with copper foil thickness at 2 oz.

2. Inside 2 layers (Middle layers) with copper foil thickness at 4 oz.

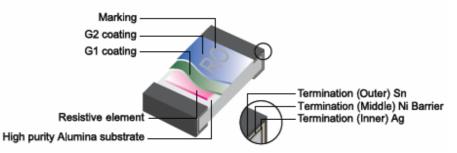

8. Derating Curve

Power rating will change based on continuous load at ambient temperature from -55 to 155° C. It is constant between -55 to 70° C, and derate to zero when temperature rise from 70 to 155° C. Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance (Ω) In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.

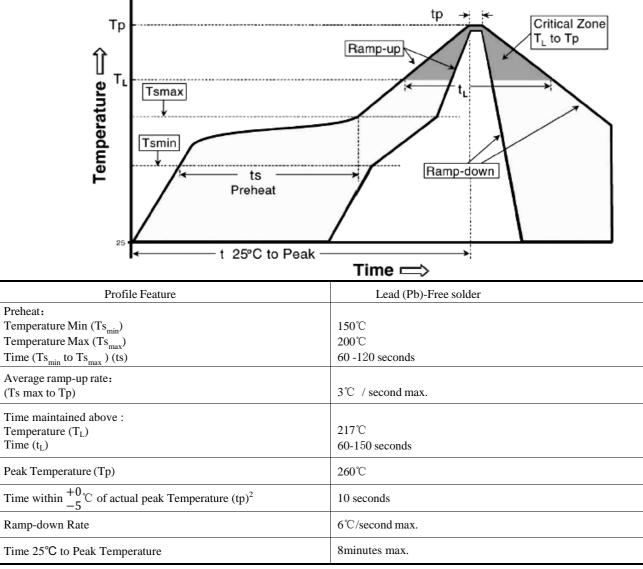


Unit:mm

9. Structure

10. Performance Specification

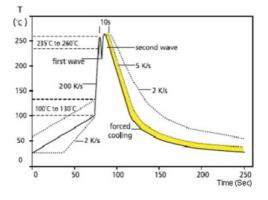
Characteristic		Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient		t:≤± 200PPM/°C 0MΩ:≤± 100PPM/°C	$\begin{array}{l} \mbox{4.8 Natural resistance changes per temp. Degree centigrade} \\ \hline R_2-R_1 \\ \hline R_2-R_1 \\ \hline R_1(t_2$-$t_1$) \\ \hline R_1: Resistance Value at room temperature (t_1); \\ R_2: Resistance at test temperature (t_2) \\ \hline t_1: +25°C or specified room temperature \\ \hline t_2: Test temperature (-55°C or 125°C) \\ \hline \end{array}$			
	±5%	±(2.0%+0.1Ω)	4.13 Permanent resistance change after the application of 2.5			
Short-time overload	±1%	±(1.0%+0.1Ω)	times RCWV or Max.Overload Votage whichever less for 5 seconds.			
Dielectric withstanding voltage		nce of flashover mechanical arcing or insulation breaks done.	4.7 Clamped in the trough of a 90 $^{\circ}$ C metallic v-block and shall be tested at ac potential respectively specified in the type for 60-70 seconds			
Terminal bending	±(1.0%+	0.05Ω) Max	4.33 Twist of test board: $Y/X = 3/90$ mm for 60seconds			
Soldering heat	Resistance change rate must be in $\pm (1.0\%+0.05\Omega)$ Max		4.18 Dipping the resistor into a solder bath having a temperature of 260°C±5°C and hold it for 10±1 seconds			
Solderability	Coverage must be over 95%.		4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder:245±3°C; Dwell time in solder: 2~3 seconds.			
Rapid change of	±5%	±(1.0%+0.1Ω)	4.19 30 min at lower limit temperature and 30 min at upper lim			
temperature	$\pm 1\%$	$\pm (0.5\% + 0.1\Omega)$	temperature, 100 cycles.			
Humidity	±5%	±(3.0%+0.1Ω)	4.24Temporary resistance change after 240 hours exposure in humidity test chamber controlled at			
(steady state)	$\pm 1\%$	$\pm (0.5\% + 0.1\Omega)$	40 ± 2 °C and 90-95% relative humidity,			
Load life	±5%	±(3.0%+0.1Ω)	7.9 Resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV or Max.Working Voltage whichever les			
in humidity	±1%	±(1.0%+0.1Ω)	in a humidity chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.			
Load life	±5%	±(3.0%+0.1Ω)	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV or Max.Working Voltage whichever less with duty			
Loud Inc	±1%	±(1.0%+0.1Ω)	cycle 1.5 hours "ON", 0.5 hour "OFF" at $70^{\circ}C\pm 2^{\circ}C$ ambient.			
Low Temperature	±5%	±(3.0%+0.1Ω)	IEC 60068-2-1 (Aa)			
Storage	±1%	±(1.0%+0.1Ω)	Lower limit temperature, for 2H.			
High Temperature	±5%	±(3.0%+0.1Ω)	MIL-STD-202 108A			
Exposure	±1%	±(1.0%+0.1Ω)	Upper limit temperature , for 1000H.			
Leaching	No visibl	e damage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C.			



11. Soldering Condition

(This is for recommendation, please customer perform adjustment according to actual application)

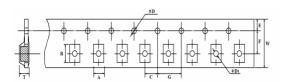
11.1 Recommend Reflow Soldering Profile : (solder : Sn96.5 / Ag3 / Cu0.5)



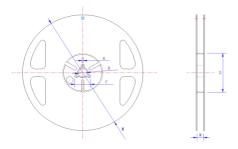
Allowed Re-flow times : 2 times

• Remark : To avoid discoloration phenomena of chip on terminal electrodes, please use N_2 Re-flow furnace . Height (F) of reflow shall be $\geq 25\%$ (H)

11.2 Recommend Wave Soldering Profile : (Apply to 0603 and above size)



12. Packing


12.1 Dimension of plastic taping: (Unit: mm)

Туре	$A \pm 0.2$	B ±0.2	C ±0.05	$\Phi D^{+0.1}_{-0}$	$\Phi D1^{+0.25}_{-0}$	$E\!\pm\!0.1$	F ±0.05	$G \pm 0.1$	W ±0.2	$T\pm0.1$
SP10	2.90	5.6	2.0	1.5	1.5	1.75	5.5	4.0	12	1.35
SP12	3.50	6.7	2.0	1.5	1.5	1.75	5.5	4.0	12	1.35
SP17	4.50	7.4	2.0	1.5	-	1.75	7.5	4.0	16	1.35
SP20	5.40	11.5	2.0	1.5	-	1.75	11.5	4.0	24	1.35
SP27	7.20	11.9	2.0	1.5	-	1.75	11.5	4.0	24	1.35

12.2 Dimension of Reel : (Unit: mm)

Туре	Taping	Qty/Reel	A±0.5	B±0.5	C±0.5	ΦD±1	ΦL±2	W±1
SP10	Embossed	2,000pcs	2.0	13.0	21.0	60.0	178.0	13.5
SP12	Embossed	2,000pcs	2.0	13.0	21.0	60.0	178.0	13.5
SP17	Embossed	2,000pcs	2.0	13.0	21.0	60.0	178.0	17.5
SP20	Embossed	1,000pcs	2.0	13.0	21.0	60.0	178.0	25.5
SP27	Embossed	1,000pcs	2.0	13.0	21.0	60.0	178.0	25.5

13. <u>Note</u>

13.1. UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity :25%~75%.

(Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

13.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

13.3. Product performance and soldered connections may deteriorate if the products are stored in the following places: a. Storage in high Electrostatic.

b. Storage in direct sunshine, rain and snow or condensation.

c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, NO₂, Br, etc.

14. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Feb.12, 2019	Haiyan Chen	Yuhua Xu
2	Modify the High Temperature Exposure conditions	7	July.29, 2019	Haiyan Chen	Yuhua Xu
3	Modify the reflow curve and add the wave soldering curve	5	Apr.29, 2020	Haiyan Chen	Yuhua Xu
4	 Add the Soldering pad size recommended Modify instructions for reflow soldering 	3 5	Jun.25, 2020	Haiyan Chen	John Zhao
5	Modify the temperature coefficient test conditions	4	Oct.26, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice