


# **DATA SHEET**

Product Name Wire -Wound Fusible Resistors

Part NameKNPU SeriesFile No.DIP-SP-013

## Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

| Tel               | +86 512 5763 1411 / 22 /33                    |
|-------------------|-----------------------------------------------|
| Email             | marketing@uni-royal.cn                        |
| Manufacture Plant | Uniroyal Electronics Industry Co., Ltd.       |
|                   | Aeon Technology Corporation                   |
|                   | Royal Electronic Factory (Thailand) Co., Ltd. |
|                   | Royal Technology (Thailand) Co., Ltd.         |



Wire-wound Fusible Resistors



#### 1. Scope

- 1.1 This datasheet is the characteristics of wire wound fusible resistors manufactured by UNI-ROYAL
- 1.2 Suitable for all kinds of protection circuit
- 1.3 Non-flammable coating, could withstand high Temperature
- 1.4 Common resistor with additional safety function, no flame or smoke, no explosion or coating crack when fusing
- 1.5 UL items available (file NO: E306074)

#### 2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 Wire wound fusible Resistors type, the  $1^{st}$  to  $3^{rd}$  digits are to indicate the product type and  $4^{th}$  digit is the special feature.
- Example: KNPU= Wire wound fusible Resistors type.

2.2  $5^{th} \sim 6^{th}$  digits:

This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail, This is to indicate the wattage or power rating .To distinguish the size and the number, the following codes are used; and please refer to the following chart for details:

 $1W \sim 7W (\geq 1W)$ 

| Wattage     | 1  | 2  | 3  | 5  | 7  |
|-------------|----|----|----|----|----|
| Normal Size | 1W | 2W | 3W | 5W | 7W |

2.3 The 7<sup>th</sup> digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.  $F=\pm 1\%$   $G=\pm 2\%$   $J=\pm 5\%$   $K=\pm 10\%$ 

2.4 The 8<sup>th</sup> to 11<sup>th</sup> digits is to denote the Resistance Value.

2.4.1 For the standard resistance values of 5% series, the 8th digit is "0", the 9<sup>th</sup> & 10<sup>th</sup> digits are to denote the significant figures of the resistance and the 11<sup>th</sup> digit is the number of zeros following.;

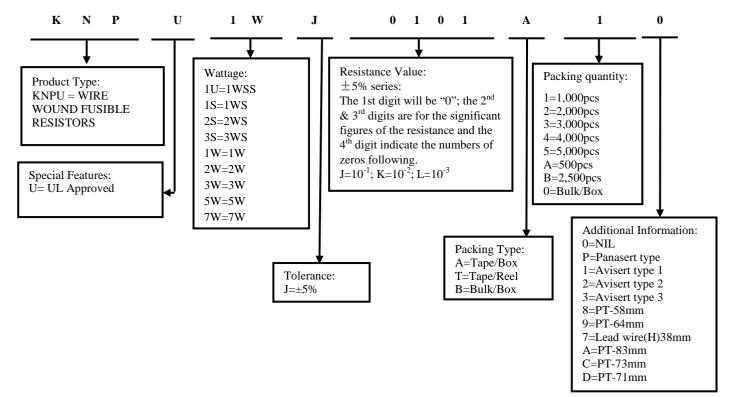
2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11<sup>th</sup> digit:

 $0=10^{0} \ 1=10^{1} \ 2=10^{2} \ 3=10^{3} \ 4=10^{4} \ 5=10^{5} \ 6=10^{6} \ J=10^{-1} \ K=10^{-2} \ L=10^{-3} \ M=10^{-4} \ 2.4.3 \ The \ 12^{th}, \ 13^{th} \ \& \ 14^{th} \ digits.$ 

The  $12^{th}$  digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box T=Tape/Reel P=Tape/Box of PT-26 products

2.4.4 The 13<sup>th</sup> digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code is to be used for some packing quantities:


1=1000pcs 2=2000pcs 5=5000pcs

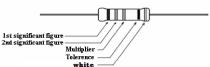
2.4.5 For some items, the 14<sup>th</sup> digit alone can use to denote special features of additional information with the following codes:

P=Panasert type 0=NIL 1=Avisert type 1 2=Avisert type 2 3=Avisert type 3 A=Cutting type CO 1/4W-A type B= Cutting type

#### 3. Ordering Procedure

(Example: KNPU 1W ±5% 100Ω T/B-1000)





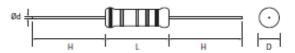



#### 4. Marking

4.1 Label:

Resistors shall be marked with color coding and welding point exposed. Colors shall be in accordance with JIS C 0802 For KNPU ±5%

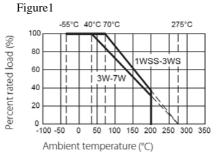



| 1 | Example:   |                       |
|---|------------|-----------------------|
|   | WIRE WOU   | JND FUSIBLE RESISTORS |
|   | WATT:1W    | VAL: 10Ω              |
|   | Q'TY: 1000 | TOL: 5%               |
|   | LOT:       | PPM:                  |
|   |            |                       |

#### 5. Ratings & Dimension

(1) Type and style
 (2) Nominal resistance
 (3) Resistance tolerance

(4) Quantity(5) Lot number(6) PPM


Label shall be marked with following items:



| True      | Dimension(mm) |        |     |        |     |           |                            |
|-----------|---------------|--------|-----|--------|-----|-----------|----------------------------|
| Туре      | D(MAX)        | L(MAX) | H±3 | d±0.05 | PT  | Tolerance | ResistanceRange            |
| KNPU 1WSS | 3.0           | 8.5    | 28  | 0.54   | 52  | ±5%       | 10Ω                        |
| KNPU 1WS  | 4.3           | 10.0   | 28  | 0.75   | 52  | ±5%       | 0.47Ω~240Ω                 |
| KNPU 1W   | 5.0           | 12.0   | 25  | 0.70   | 52  | ±5%       | 0.47Ω~240Ω                 |
| KNPU 2WS  | 5.0           | 12.0   | 25  | 0.70   | 52  | ±5%       | 0.47Ω~240Ω                 |
| KNPU 2W   | 5.5           | 16.0   | 28  | 0.70   | 64  | ±5%       | 0.47Ω~240Ω                 |
| KNPU 3WS  | 5.5           | 16.0   | 28  | 0.70   | 64  | ±5%       | 0.47Ω~240Ω                 |
| KNPU 3W   | 6.5           | 17.5   | 28  | 0.75   | 64  | ±5%       | 0.47Ω~240Ω                 |
| KNPU 5W   | 8.0           | 20.0   | 38  | 0.75   | B/B | ±5%       | 0.47Ω~240Ω                 |
| KNPU 7W   | 8.5           | 25.0   | 38  | 0.75   | B/B | ±5%       | $0.47\Omega \sim 47\Omega$ |

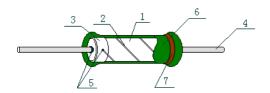
#### 6. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55  $^{\circ}$ C to 70  $^{\circ}$ C. For temperature in excess of 70  $^{\circ}$ C, the load shall be derate as shown in figure 1



6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternatingcurrent (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:


$$RCWV = \sqrt{P \times R}$$

Where: RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (VOLT.) P = power rating (WATT.) R= nominal resistance (OHM)

The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less.

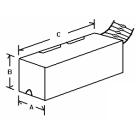


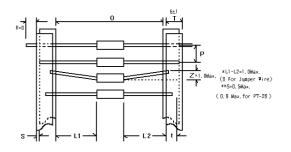
### 7. Structure



| NO. | Name       | Raw materials                                   |
|-----|------------|-------------------------------------------------|
| 1   | Basic body | Rod Type Ceramics                               |
| 2   | Resistor   | Resistance Wire Alloy                           |
| 3   | End cap    | Steel (Tin Plated iron Surface)                 |
| 4   | Lead wire  | Annealed copper wire coated with tin            |
| 5   | Joint      | By welding                                      |
| 6   | Coating    | Insulated & Non-Flame paint (Color: Deep Green) |
| 7   | Color code | Non-Flame Epoxy Resin                           |

### 8. <u>Performance Specification</u>


| Characteristic                        | Limits                                                                                        | Test Method<br>(JIS-C-5201& JIS-C-5202&UL1412& IEC60115-1)                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature<br>Coefficient            | ≥20Ω: ±300PPM/°C<br><20Ω: ±400PPM/°C                                                          | JIS-C-5201 4.8<br>4.8 Natural resistance changes per temp. Degree centigrade<br>$\frac{R_2 \cdot R_1}{R_1 \cdot r_1} \times 10^6 \cdot (\text{PPM/°C})$ R <sub>1</sub> : Resistance Value at room temperature (t <sub>1</sub> );<br>R <sub>2</sub> : Resistance at test temperature (t <sub>2</sub> )<br>t <sub>1</sub> : +25°C or specified room temperature<br>t <sub>2</sub> : Test temperature (-55°C or 125°C) |
| Short-Time<br>Overload                | Resistance change rate is: $\pm (2\%+0.05\Omega)$ Max. With no evidence of mechanical damage. | JIS-C-5201 4.13<br>Permanent resistance change after the application of a potential of 2.5<br>times RCWV for 5 seconds                                                                                                                                                                                                                                                                                              |
| Dielectric<br>withstanding<br>voltage | No evidence of flashover mechanical<br>damage, arcing or insulation break<br>down             | JIS-C-5201 4.7<br>Resistors shall be clamped in the trough of a 90° metallic V-block and<br>shall be tested at AC potential respectively specified in the above list for<br>60-70 seconds.                                                                                                                                                                                                                          |
| Terminal<br>strength                  | No evidence of mechanical damage                                                              | JIS-C-5201 4.16Direct load:Resistance to a 2.5 kg direct load for 10 seconds in the direction of thelongitudinal axis of the terminal leads.Twist test:Terminal leads shall be bent through 90°at a point of about 6mm fromthe body of the resistor and shall be rotated through 360° about theoriginal axis of the bent terminal in alternating direction for a total of 3rotations.                               |
| Solderability                         | 95% Coverage Min.                                                                             | JIS-C-5201 4.17<br>The area covered with a new, smooth, clean, shiny and continuous<br>surface free from concentrated pinholes.<br>Temperature of solder:245°C±3°C<br>Dwell time in solder: 2~3seconds.                                                                                                                                                                                                             |
| Resistance to soldering heat          | Resistance change rate is:<br>(1%+0.05 Ω) Max.<br>With no evidence of mechanical<br>damage    | JIS-C-5201 4.18<br>Permanent resistance change when leads immersed to a point 2.0-2.5mn from the body in $260^{\circ}C\pm5^{\circ}C$ solder for $10\pm1$ seconds.                                                                                                                                                                                                                                                   |
| Load life                             | Resistance change rate<br>is :±(5%+0.05Ω Max<br>With no evidence of mechanical<br>damage.     | JIS-C-5201 4.25.1<br>Permanent resistance change after 1,000 hours operating at RCWV with<br>duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C±2°C ambient                                                                                                                                                                                                                                                       |

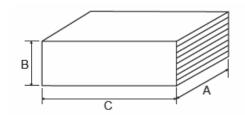





| Load life in humidity           | Resistance change rate<br>is: $\pm(5\%+0.05\Omega)$ Max<br>With no evidence of mechanical<br>damage.                                                             | JIS-C-5202 4.24<br>Resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at<br>RCWV in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and<br>$90\sim95\%$ RH relative humidity. |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fusing test                     | Resistance should be opened(The Resistance value is over than 50times from before test value)followfusing curve conditionMagnificationof power35 times120s (max) | UL1412                                                                                                                                                                                                            |  |  |
| Low<br>Temperature<br>Storage   | Resistance change rate<br>is :±(5%+0.05Ω Max<br>With no evidence of mechanical<br>damage.                                                                        | IEC 60068-2-1 (Aa)<br>Lower limit temperature , for 2H.                                                                                                                                                           |  |  |
| High<br>Temperature<br>Exposure | Resistance change rate<br>is : $\pm(5\%+0.05\Omega$ Max<br>With no evidence of mechanical<br>damage.                                                             | MIL-STD-202 108A<br>Upper limit temperature , for 16H.                                                                                                                                                            |  |  |
| Rapid change of temperature     | Resistance change rate<br>is : $\pm$ (5%+0.05 $\Omega$ Max<br>With no evidence of mechanical<br>damage.                                                          | JIS-C-5201 4.19<br>30 min at lower limit temperature and 30 min at upper limit<br>temperature , 100 cycles.                                                                                                       |  |  |

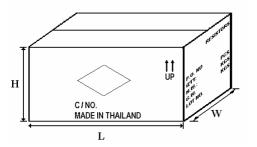
**9.** <u>Packing</u> 9.1 Tapes in Box Packing






|           |      |        |     |     | Dimension of T/B (mm) |          |  |
|-----------|------|--------|-----|-----|-----------------------|----------|--|
| Part No.  | 0    | Р      | A±5 | B±5 | C±5                   | Qty/Box  |  |
| KNPU 1W   | 52±1 | 5±0.3  | 86  | 80  | 262                   | 1,000pcs |  |
| KNPU 2W   | 64±5 | 10±0.5 | 92  | 108 | 262                   | 1,000pcs |  |
| KNPU 3W   | 64±5 | 10±0.5 | 92  | 80  | 256                   | 500pcs   |  |
| KNPU 1WSS | 52±1 | 5±0.3  | 85  | 70  | 260                   | 1,000pcs |  |
| KNPU 1WS  | 52±1 | 5±0.3  | 92  | 106 | 262                   | 1,000pcs |  |
| KNPU 2WS  | 52±1 | 5±0.3  | 86  | 80  | 262                   | 1,000pcs |  |
| KNPU 3WS  | 64±5 | 10±0.5 | 92  | 108 | 262                   | 1,000pcs |  |






9.2 Box packing ( Plastic Case )



| Dimension of Box (mm) |              |              |              |                         |  |  |  |  |
|-----------------------|--------------|--------------|--------------|-------------------------|--|--|--|--|
| Туре                  | $L(C) \pm 5$ | $W(A) \pm 5$ | $H(B) \pm 5$ | Quantity Per Bag (Pcs.) |  |  |  |  |
| KNPU5W                | 36           | 20           | 8            | 100 / 1,000             |  |  |  |  |

#### 9.3 Bulk in inner box packing ( in plastic case )



| Туре   | Q'ty / Bag (pcs.) | Q'ty / Inner Box (pcs.) | Q'ty / Carton (pcs.) | Carton Box Size<br>L x W x H (±5) |
|--------|-------------------|-------------------------|----------------------|-----------------------------------|
| KNPU7W | 8                 | 32                      | 1,600                | 560 x 305 x 310                   |

#### 10. <u>Note</u>

- 10.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 10.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 10.3. Storage conditions as below are inappropriate:
  - a. Stored in high electrostatic environment
  - b. Stored in direct sunshine, rain, snow or condensation.
  - c. Exposed to sea wind or corrosive gases, such as  $Cl_2$ ,  $H_2S$ ,  $NH_3$ ,  $SO_2$ ,  $NO_2$ , etc.

| 11. | 11. <u>Record</u> |                                                                              |      |              |             |            |  |  |
|-----|-------------------|------------------------------------------------------------------------------|------|--------------|-------------|------------|--|--|
|     | Version           | Description                                                                  | Page | Date         | Amended by  | Checked by |  |  |
|     | 1                 | First version                                                                | 1~6  | Mar.20, 2018 | Haiyan Chen | Nana Chen  |  |  |
| _   | 2                 | <ol> <li>Modify the Derating Curve</li> <li>Modify characteristic</li> </ol> | 5~6  | Feb.23, 2019 | Haiyan Chen | Yuhua Xu   |  |  |
|     | 3                 | Modify characteristic                                                        | 4~5  | Nov.15, 2019 | Haiyan Chen | Yuhua Xu   |  |  |
|     | 4                 | Delete a 1WS dimension                                                       | 3    | May.13, 2020 | Haiyan Chen | Yuhua Xu   |  |  |
|     | 5                 | Modify the color ring label                                                  | 3    | Aug.18, 2021 | Haiyan Chen | John Zhao  |  |  |
|     | 6                 | Modify the temperature coefficient test conditions                           | 4    | Oct.28, 2022 | Haiyan Chen | Yuhua Xu   |  |  |

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice