DATA SHEET **Product Name Wire - Wound Non-inductive Film Fixed Resistors** Part Name KNPI Series File No. DIP-SP-011 # Uniroyal Electronics Global Co., Ltd. 88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China Tel +86 512 5763 1411 / 22 /33 Email marketing@uni-royal.cn Manufacture Plant Uniroyal Electronics Industry Co., Ltd. Aeon Technology Corporation Royal Electronic Factory (Thailand) Co., Ltd. Royal Technology (Thailand) Co., Ltd. #### 1. Scope - 1.1 This datasheet is the characteristics of Wire -Wound Non-inductive Film Fixed Resistors manufactured by UNI-ROYAL - 1.2 Excellent flame retardant coating - 1.3 too low or too high ohmic value can be supplied on a case to case basis - 1.4 Non-inductive production process #### 2. Part No. System The standard Part No. includes 14 digits with the following explanation: 2.1 Non-Inductive Wire-Wound Fixed Resistors type, the 1^{st} to 3^{rd} digits are to indicate the product type and 4th digit is the special feature. Example: KNPI= Non-Inductive Wire-Wound Fixed Resistors - 2.2 5th~6th digits: - 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers, The following codes are used; and please refer to the following chart for detail: W=Normal Size; S=Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal: $1/16W\sim1/2W$ (<1W) | Wattage | 1/2 | 1/3 | 1/4 | 1/5 | 1/6 | 1/8 | 1/10 | 1/16 | | |--------------|-----|-----|-----|-----|-----|-----|------|------|----| | Normal Size | W2 | W3 | W4 | W5 | W6 | W8 | WA | WG | | | Small Size | S2 | S3 | S4 | S5 | S6 | S8 | SA | SG | | | 1W~16W (≧1W) | | | | | | | | | | | Wattage | 1 | 2 | 3 | 5 | 7 | 8 | 9 | 10 | 15 | | Normal Size | 1W | 2W | 3W | 5W | 7W | 8W | 9W | AW | FW | | Small Size | 1S | 2S | 3S | 5S | 7S | 8S | 9S | AS | FS | 2.2.2 For power rating less than 1 watt, the 5th digit will be the letters W, or S to represent the size required & the 6th digit will be a number or a letter code. Example: WA=1/10W; 2.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W or S. Example: AW=10W; 3S=3W-S 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $$F=\pm 1\%$$ $G=\pm 2\%$ $J=\pm 5\%$ $K=\pm 10\%$ - 2.4 The 8th to 11th digits is to denote the Resistance Value. - 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0",the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.; For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the 21th digit is the zeros following. 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit: $$0=10^0$$ $1=10^1$ $2=10^2$ $3=10^3$ $4=10^4$ $5=10^5$ $6=10^6$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$ 2.4.3 The 12th, 13th & 14th digits. The 12th digit is to denote the Packaging Type with the following codes: A=Tape/Box (Ammo pack) B=Bulk/Box T=Tape/Reel P=Tape/Box of PT-26 products 2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code is to be used for some packing quantities: A=500pcs B=2500pcs C=10000pcs D=20000pcs G=25000pcs H=50000pcs 2.4.5 For the FORMED type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes: MF=M-type with flattened lead wire F0= F-type MK= M-type with kinked lead wire F1= F1-type ML= M-type with normal lead wire F2= F2-type MC= M-type with bending lead wire F3= F3-type 2.4.6 For some items, the 14th digit alone can use to denote special features of additional information with the following codes: P=Panasert type 1=Avisert type 1 2=Avisert type 2 3=Avisert type 3 A=Cutting type CO 1/4W-A type B= Cutting type CO 1/4W-B type #### 3. Ordering Procedure (Example: KNPI 2W $\pm 5\%$ 100 Ω T/B-1000) #### 4. Marking Resistors shall be marked with color coding Colors shall be in accordance with JIS C 0802 #### 4.1 Label: Label shall be marked with following items: - (1) Type and style - (2) Nominal resistance - (3) Resistance tolerance - (4) Quantity - (5) Lot number - (6) PPM # Example: Wier - Wound Non-inductive Film Fixed Resistors WATT : 1W VAL: 1ΩQ'TY: 1000 TOL: 5% LOT: 509528 PPM: ## 5. Ratings & Dimension ## 2.1 Normal size | Trino | Dimension(mm) | | | | | Tolerance | Resistance Range | |-----------|---------------|------|--------|-----|-----|------------------|------------------| | Туре | D±1 | L±1 | d±0.05 | H±3 | PT | Tolerance | Resistance Range | | KNPI 1/2W | 3.0 | 9.5 | 0.54 | 28 | 52 | ±2% \ ±5% \ ±10% | 0.01Ω~30Ω | | KNPI 1WS | 3.0 | 9.5 | 0.54 | 28 | 52 | ±2% \ ±5% \ ±10% | 0.01Ω~30Ω | | KNPI 1W | 4.0 | 11.5 | 0.70 | 25 | 52 | ±2% \ ±5% \ ±10% | 0.01Ω~62Ω | | KNPI 2WS | 4.0 | 11.5 | 0.70 | 25 | 52 | ±2% \ ±5% \ ±10% | 0.01Ω~62Ω | | KNPI 2W | 5.5 | 15.5 | 0.70 | 28 | 64 | ±2% \ ±5% \ ±10% | 0.018Ω~120Ω | | KNPI 3WS | 5.5 | 15.5 | 0.70 | 28 | 64 | ±2% \ ±5% \ ±10% | 0.018Ω~120Ω | | KNPI 3W | 6.5 | 17.5 | 0.75 | 28 | 64 | ±2% \ ±5% \ ±10% | 0.024Ω~150Ω | | KNPI 5WS | 6.5 | 17.5 | 0.75 | 28 | 64 | ±2% \ ±5% \ ±10% | 0.024Ω~150Ω | | KNPI 5W | 8.5 | 24.5 | 0.75 | 38 | 90 | ±2% \ ±5% \ ±10% | 0.043Ω~430Ω | | KNPI 7WS | 8.5 | 24.5 | 0.75 | 38 | 90 | ±2% \ ±5% \ ±10% | 0.043Ω~430Ω | | KNPI 7W | 8.5 | 29.5 | 0.75 | 38 | B/B | ±2% \ ±5% \ ±10% | 0.047Ω~430Ω | | KNPI 8WS | 8.5 | 29.5 | 0.75 | 38 | B/B | ±2% \ ±5% \ ±10% | 0.047Ω~430Ω | | KNPI 8W | 8.5 | 39.5 | 1.00 | 38 | B/B | ±2% \ ±5% \ ±10% | 0.091Ω~620Ω | | KNPI 9WS | 8.5 | 39.5 | 1.00 | 38 | B/B | ±2% \ ±5% \ ±10% | 0.091Ω~620Ω | | KNPI 9W | 8.5 | 52.5 | 1.00 | 38 | B/B | ±2% \ ±5% \ ±10% | 0.13Ω~820Ω | | KNPI 10WS | 8.5 | 52.5 | 1.00 | 38 | B/B | ±2% \ ±5% \ ±10% | 0.13Ω~820Ω | # 6. Derating Curve Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derate as shown in figure 1 # 6.1 Voltage rating: Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula: RCWV = $\sqrt{P \times R}$ Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.) P = power rating (WATT.) R= nominal resistance (OHM) The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less. # 7. Structure | No. | Name | Raw materials | | | |-----|------------|---------------------------------|--|--| | 1 | Basic body | Rod Type Ceramics | | | | 2 | Resistor | Ni-Cr Alloys | | | | 3 | End cap | Steel (Tin Plated iron Surface) | | | | 4 | Lead wire | Tin solder coated copper wire | | | | 5 | Joint | By welding | | | | | | Insulated Resin | | | | 6 | Coating | Color: Deep Green (Normal size) | | | | | | Light Green (Small size) | | | | 7 | Marking | Epoxy Resin | | | # 8. <u>Performance Specification</u> | Characteristic | Limits | Test Methods
(GB/T5729&JIS-C-5201&IEC60115-1) | |------------------------------|--|--| | Temperature
Coefficient | ≥ 20Ω: ±300PPM/°C
<20Ω: ±400PPM/°C | 4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 \text{ (PPM/°C)}$ $R_1: \text{ Resistance Value at room temperature } (t_1) ;$ $R_2: \text{ Resistance at test temperature } (t_2)$ $t_1: +25\text{°C or specified room temperature}$ $t_2: \text{ Test temperature } (-55\text{°C or } 125\text{°C})$ | | Short-Time
Overload | Resistance change rate is: $\pm (2\%+0.05\Omega)$ max. With no evidence of mechanical damage. | 4.13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds. | | Terminal strength | No evidence of mechanical damage | 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. | | Resistance to soldering heat | Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max With no evidence of mechanical damage. | 4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5 °C solder for 10±1 seconds. | | Solderability | 95% Coverage Min. | 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C±3 °C Dwell time in solder:2~3 seconds. | | Load life in humidity | Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max With no evidence of mechanical damage. | 7.9 resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity test chamber controlled at 40°C ±2°C and 90 to 95% relative humidity. | | Load life | Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max With no evidence of mechanical damage. | 4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70 °C±2°C ambient. | | Low
Temperature
Storage | Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max With no evidence of mechanical damage. | IEC 60068-2-1 (Aa)
Lower limit temperature , for 2H. | |---------------------------------|--|---| | High
Temperature
Exposure | Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max With no evidence of mechanical damage. | MIL-STD-202 108A
Upper limit temperature , for 16H. | | Rapid change of temperature | Resistance change rate is: $\pm (2\% + 0.05\Omega)$ Max With no evidence of mechanical damage. | 4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles. | ## 9. Packing # 9.1 Tapes in Box Packing Dimension of T/B (mm) Part No. \mathbf{O} P A±5 $B\pm 5$ $C\pm 5$ Qty/Box KNPI 1/2W 52±1 5±0.3 75 45 255 1,000pcs KNPI 1WS 5±0.3 75 45 255 1,000pcs 52±1 KNPI 1W 52 ± 1 5±0.3 86 82 255 1,000pcs KNPI 2WS 5 ± 0.3 86 82 52 ± 1 255 1,000pcs KNPI 2W 64 ± 5 10±0.5 90 119 255 1,000pcs 64±5 KNPI 3WS 90 255 10 ± 0.5 119 1,000pcs KNPI 3W 64±5 10 ± 0.5 90 88 255 500pcs 64±5 KNPI 5WS 10±0.5 90 88 255 500pcs 115 KNPI 5W 90±5 10 ± 0.5 124 500 **500PCS** KNPI 7WS 90±5 10 ± 0.5 115 124 500 500PCS # 9.2 Tapes in Reel Packing | | | | | | Dimension of Reel (mm) | | | |-----------|------|-------|-----|-----|------------------------|----------|--| | Part No. | О | A | W±5 | H±5 | L±5 | Qty/Box | | | KNPI 1/2W | 52±1 | 73±2 | 85 | 295 | 293 | 2,500pcs | | | KNPI 1WS | 52±1 | 73±2 | 85 | 295 | 293 | 2,500pcs | | | KNPI 1W | 52±1 | 73±2 | 85 | 295 | 293 | 2,500pcs | | | KNPI 2WS | 52±1 | 73±2 | 85 | 295 | 293 | 2,500pcs | | | KNPI 2W | 64±5 | 80±5 | 95 | 295 | 293 | 1,000pcs | | | KNPI 3WS | 64±5 | 80±5 | 95 | 295 | 293 | 1,000pcs | | | KNPI 3W | 64±5 | 80±5 | 95 | 295 | 293 | 1,000pcs | | | KNPI 5WS | 64±5 | 80±5 | 95 | 295 | 293 | 1,000pcs | | | KNPI 5W | 90±5 | 115±5 | 121 | 310 | 310 | 700pcs | | | KNPI 7WS | 90±5 | 115±5 | 121 | 310 | 310 | 700pcs | | ## 9.3 Bulk in Box Packing | | | | | Dimension of Box (mm) | |-----------|-----|-----|-----|-----------------------| | Part No. | A±5 | B±5 | C±5 | Qty/Box | | KNPI 1/2W | 140 | 80 | 240 | 250/5,000pcs | | KNPI 1WS | 140 | 80 | 240 | 250/5,000pcs | | KNPI 1W | 140 | 80 | 240 | 100/2,500pcs | | KNPI 2WS | 140 | 80 | 240 | 100/2,500pcs | | KNPI 2W | 140 | 80 | 240 | 100/1,500pcs | | KNPI 3WS | 140 | 80 | 240 | 100/1,500pcs | | KNPI 3W | 140 | 80 | 240 | 100/1,000pcs | | KNPI 5WS | 140 | 80 | 240 | 100/1,000pcs | | KNPI 5W | 140 | 80 | 240 | 25/400pcs | | KNPI 7WS | 140 | 80 | 240 | 25/400pcs | | KNPI 7W | 140 | 80 | 240 | 25/300pcs | | KNPI 8WS | 140 | 80 | 240 | 25/300pcs | | KNPI 8W | 140 | 80 | 240 | 25/300pcs | | KNPI 9WS | 140 | 80 | 240 | 25/200pcs | | KNPI 9W | 140 | 80 | 240 | 25/200pcs | | KNPI 10WS | 140 | 80 | 240 | 25/200pcs | #### 10. <u>Note</u> - 10.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 ℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old. - 10.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed. - 10.3. Storage conditions as below are inappropriate: - a. Stored in high electrostatic environment - b. Stored in direct sunshine, rain, snow or condensation. - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc. #### 11. Record | Version | Description | Page | Date | Amended by | Checked by | |---------|---|------|--------------|-------------|------------| | 1 | First version | 1~7 | Mar.20, 2018 | Haiyan Chen | Nana Chen | | 2 | 1.Modify the Derating Curve 2. Modify characteristic | 5~6 | Feb.23, 2019 | Haiyan Chen | Yuhua Xu | | 3 | Modify the product name code identity, "KNPN" changed to "KNPI" | 1~7 | Jun.12, 2020 | Haiyan Chen | Yuhua Xu | | 4 | Modify the size of 8W to 10WS wires from "0.75" to "1.00" | 4 | Mar.15, 2022 | Haiyan Chen | Yuhua Xu | | 5 | Modify the temperature coefficient test conditions | 5 | Oct.28, 2022 | Haiyan Chen | Yuhua Xu | © Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice