

DATA SHEET

Product Name Axial Leaded Type Cement Fixed Resistors

Part Name PRW Series File No. DIP-SP-025

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

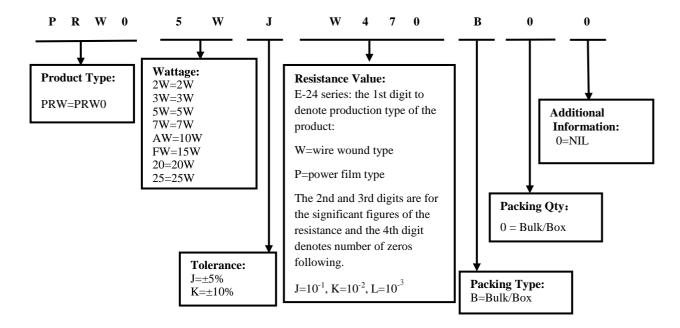
Royal Technology (Thailand) Co., Ltd.

1. Scope:

- 1.1 This datasheet is the characteristics of Axial Leaded Type Cement Fixed Resistors manufactured by UNI-ROYAL
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Non-inductive type available
- 1.5 Excellent flame & moisture resistance
- 1.6 Too low or too high values on Wire-wound & Power -film type can be supplied on a case to case basis

2. Part No. System:

The standard Part No. includes 14 digits with the following explanation:

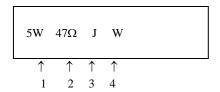

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PRW0=PRW type
- 2.2 5th~6th digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5^{th} digit will be a number or a letter code and the 6^{th} digit will be the letters of W. Example: 5W=5W; AW=10W
- 2.2.2 For power rating between 20 watt to 99 watt, the 5^{th} and the 6^{th} digits will show the whole numbers of the power rating itself. Example: 20=20W 75=75W
- 2.3 The 7^{th} digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.

Example: W12J=1.2 Ω W120=12 Ω P273=27K Ω

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:B=Bulk/Box
- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14^{th} digit alone can use to denote special features of additional information with the following codes or standard product. Example: 0 = standard product

3. Ordering Procedure

(Example: PRW 5W \pm 5% 47 Ω B/B)

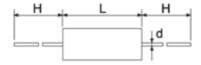


4. Marking

Example:

Code description and regulation:

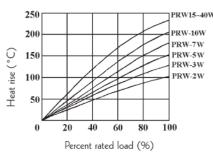
- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: \pm 5%

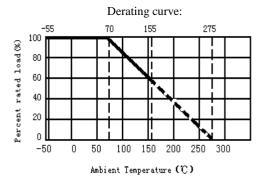

K: ± 10%

4. Pattern:

M: Power filmW: Wire wound

Color of marking: Black Ink


5. Ratings & Dimension



	Dimension(mm)				Max.	Max.	Resistance Range		
Type	W±1	D±1	L±1	Н	d±0.05	working voltage	Overload voltage	Wire Wound	Power Film
PRW 1W	6	6	13.5	25±3	0.70	200V	400V	0.1Ω~27Ω	28Ω~100ΚΩ
PRW 2W	7	7	18	28±5	0.70	250V	500V	0.1Ω~27Ω	28Ω~120ΚΩ
PRW 3W	8	8	22	32±5	0.70	300V	600V	0.1Ω~39Ω	40Ω~150ΚΩ
PRW 5W	10	9	22	35±5	0.75	350V	700V	$0.1\Omega\sim47\Omega$	48Ω~150KΩ
PRW 7W	10	9	35	35±5	0.75	500V	1000V	$0.1\Omega\sim680\Omega$	681Ω~200ΚΩ
PRW 10W	10	9	49	35±5	0.75	700V	1400V	$0.1\Omega\sim910\Omega$	911Ω~200ΚΩ
PRW 15W	12.5	11.5	49	35±5	0.75	700V	1400V	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
PRW 20W	14.5	13.5	60	35±5	0.75	750V	1500V	2Ω~1.2ΚΩ	1.3ΚΩ~200ΚΩ
PRW 25W	14.5	13.5	64	35±5	0.75	750V	1500V	2Ω~1.2ΚΩ	1.3ΚΩ~200ΚΩ

6. Derating Curve

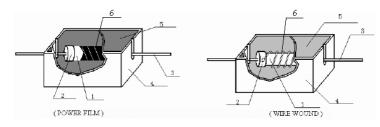
6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)


R= nominal resistance (OHM)

7. Structure

No.	Name	material generic name			
1	Body	Al_2O_3			
2	Cap	Tin plated iron			
3	Lead	Copper Wire			
4	Ceramic Case	Al ₂ O ₃ CaO			
5	Filling Materials	SiO_2			
(Desistant alamant	Power film: Metal Oxide Film			
6	Resistance element	Wire-wound: Ni-Cr alloys or Cu-Ni alloys			

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	≥ 20Ω: ±350PPM/°C < 20Ω: ±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{$			
Short-time overload	Resistance change rate must be in $\pm (5\%+0.05\Omega)$,and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.			
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90°metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.			
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.			
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω) ,and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5 °C solder for 10±1 seconds.			
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245 °C ±3 °C Dwell time in solder: 2~3 seconds.			
Humidity (Steady state)	Resistance change rate must be in $\pm (5\%+0.05\Omega)$,and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2 °C and 90~95% RH relative humidity			

Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}\text{C}\pm2^{\circ}\text{C}$ and 90 to 95% relative humidity.
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C ±2°C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice