

DATA SHEET

Product Name High Power Wire-wound Iron Shell Fixed Resistors

Part Name HPWR 110W, 120W, 220W Series

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

High Power Wire-wound Iron Shell Fixed Resistors

1. Scope

- 1.1 This datasheet is the characteristics of High Power Wire-wound Flat Aluminum Shell Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 High Power Wire-wound Flat Aluminum Shell Fixed Resistors
- 1.3 Easy to assembled on PCB
- 1.4 Application: Power supply of frequency converter

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 High Power Wire-wound Flat Aluminum Shell Fixed Resistors the 1st to 4rd digits are to indicate the product type.

Example: HPWR= High Power Wire-wound Flat Aluminum Shell Fixed Resistors

- $2.2.5^{th} \sim 6^{th}$ digits:
- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

 $1/16W \sim 1/2W (< 1W)$

Wattage		1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16
waitage		1/2	1/3	1/4	1/3	1/0	1/0	1/10	1/10
Normal Size		W2	W3	W4	W5	W6	W8	WA	WG
Small Size		S2	S3	S4	S5	S6	S8	SA	SG
1W~16W (≥1W)									
Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	3S	5S	7S	8S	9S	AS	FS

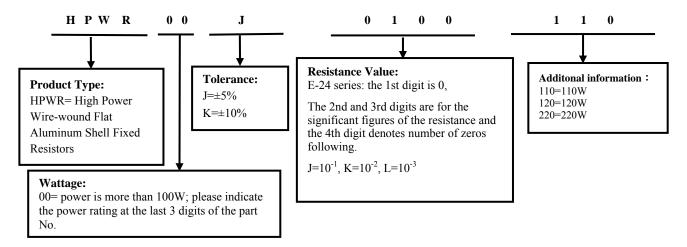
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ $K=\pm10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the zeros following:

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$ $N=10^{-5}$ $P=10^{-6}$

2.4.3 The 12th, 13th & 14th digits.

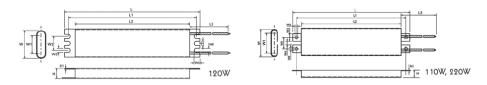

The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk /Box

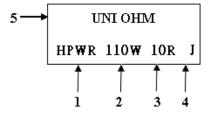
- 2.4.4 Current Sense Resistors, The 13th digit should be filled with "0"
- 2.4.5 Current Sense Resistors, The 14th digit should be filled with "0"

3. Ordering Procedure

(Example: HPWR 110W $\pm 5\%$ 10 Ω B/B)



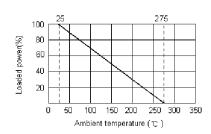
High Power Wire-wound Iron Shell Fixed Resistors


4. Dimension

				Unit:mm		
Туре	L+0/-5	L1±0.5	W±0.5	H±0.5	L3±5	
HPWR 110W	105	91.5	44.6	11.5	300	
HPWR 120W	195	184	40	14	250	
HPWR 220W	200	187	44.6	11.5	250	

^{*}Remark: For further information, please contact our sales team.

5. Resistor marked



Code description and regulation:

- 1. Resisters type
- 2. Wattage rating
- 3. Nominal resistance value
- 4. Resistance tolerance. J: \pm 5%
- 5. Trademark

marking: LASER PRINT

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

High Power Wire-wound Iron Shell Fixed Resistors

7. Performance Specification

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1)				
Temperature Coefficient	±300 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 \text{ (PPM/°C)}$ $R_1: \text{ Resistance Value at room temperature } (t_1);$ $R_2: \text{ Resistance at test temperature}$ $(\text{Upper limit temperature or Lower limit temperature})$ $t_1: +25^{\circ}\text{C or specified room temperature}$ $t_2: \text{ Upper limit temperature or Lower limit temperature test temperature}$				
Short time overlord	Resistance change rate is : \pm (5%+0.05 Ω) max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 10 times power rating or the max. Overload voltage respectively specified in the above list, whichever less for 10 seconds.				
Load life (room temperature)	Resistance change rate is : \pm (5%+0.05 Ω) max. With no evidence of mechanical damage.	(Room temperature 25°C±5°C) continue electrify for 96h.				
Humidity (Steady state)	Resistance change rate is: $\pm (3\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2℃ and 90~95%RH relative humidity				
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down	AC 3000V for 60 seconds				

8. <u>Note</u>

- 8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH.
 - Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, etc.

9. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~4	Apr.16, 2019	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice