

DATA SHEET

Product Name Axial Leaded Type Cement Fixed Resistors

Part Name PRWC Series File No. DIP-SP-026

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33			
Email	marketing@uni-royal.cn			
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.			
	Aeon Technology Corporation			
	Royal Electronic Factory (Thailand) Co., Ltd.			
	Royal Technology (Thailand) Co., Ltd.			

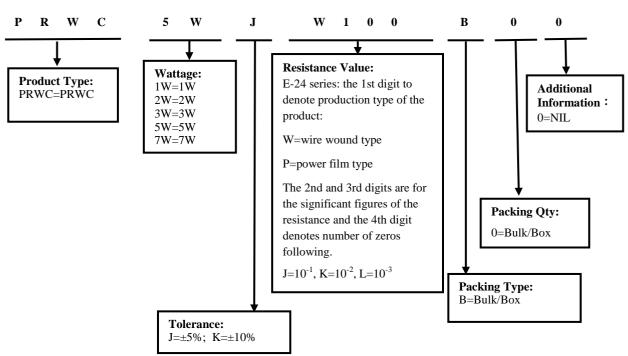
1. Scope

- 1.1 This datasheet is the characteristics of Axial Leaded Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Non-inductive type available
- 1.5 Excellent flame & moisture resistance
- 1.6 Too low or too high values on Wire-wound&Power -film type can be supplied on a case to case basis

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4^{th} digit will be "0" Example: PRWC = PRWC type
- 2.2 5th~6th digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.
- Example: 5W=5W
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ K= $\pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W"or "P"to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following
- Example: W12J=1.2Ω W120=12Ω P273=27KΩ

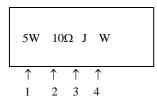

2.5 The 12^{th} , 13^{th} & 14^{th} digits.

- 2.5.1 The 12^{th} digit is to denote the Packaging Type with the following codes:
- B=Bulk/Box
- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0"for the Cement products with "Bulk/Box" packing requirements.

2.5.3 For some items, the 14^{th} digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

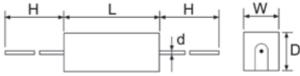
3. Ordering Procedure

(Example: PRWC 5W \pm 5% 10 Ω B/B)



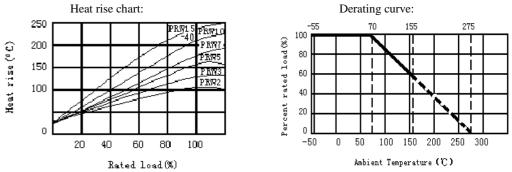
4. <u>Marking</u>

Example:



Code description and regulation:

- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. $J: \pm 5\%$
 - K: ± 10%
- 4. Pattern:
 - M: Power film
 - W: Wire wound


Color of marking: Black Ink

5. Ratings & Dimension

Туре	Dimension(mm)				Resistance Range		
	W±1	D±1	L±1	Н	d±0.05	Wire Wound	Power Film
PRWC 1W	6	6	12	25±3	0.70	1Ω~27Ω	28Ω~33ΚΩ
PRWC 2W	6	6	18	28±5	0.70	1Ω~27Ω	28Ω~33ΚΩ
PRWC 3W	6	6	20	28±5	0.70	1Ω~27Ω	28Ω~120ΚΩ
PRWC 5W	6	6	25	35±5	0.75	1Ω~200Ω	201Ω~150ΚΩ
PRWC 7W	9	9	25	35±5	0.75	1Ω~200Ω	201Ω~150ΚΩ

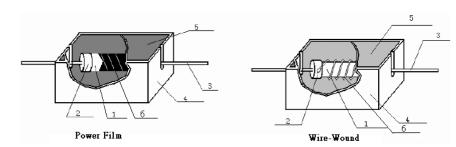
6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternatingcurrent (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)


P = power rating (WATT.)

R= nominal resistance (OHM)

7. <u>Structure</u>

No.	Name	Material Generic Name		
1	Body	Al_2O_3		
2	Cap Tin plated iron			
3	Lead	Copper Wire		
4	Ceramic Case	Al ₂ O ₃ CaO		
5	Filling Materials SiO ₂			
6		Power Film: Metal Mixed film		
	Resistance element	Wire-Wound: Alloy Wire		

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	≥20Ω: ±350PPM/°C <20Ω: ±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (t_2) t_1: +25^{\circ}C or specified room temperature t_2: Test temperature (-55^{\circ}C or 125^{\circ}C)		
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$,and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds.		
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V- block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds for cement fixed resistors the testing voltage is 1000V.		
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 		
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}c$ solder for 10 ± 1 seconds.		

Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C±3 °C Dwell time in solder: 2~3seconds. 	
Humidity (Steady state)	Resistance change rate must be in $\pm (5\%+0.05\Omega)$,and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity	
Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.	
Load life	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70^{\circ}C \pm 2^{\circ}C$ ambient.	
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.	
High Temperature Exposure	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	MIL-STD-202 108A Upper limit temperature , for 16H.	

9. <u>Note</u>

9.1 UNI-ROYAL recommend the storage condition temperature: $15\,^\circ\!\mathrm{C}\text{-}35\,^\circ\!\mathrm{C}$, humidity :25%~75%.

(Put condition for individual product)

Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) manybe degraded.

9.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

9.3 Product performance and soldered connections may deteriorate if the products are stored in the following places: a. Storage in high Electrostatic

b. Storage in direct sunshine > rain and snow or condensation

c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₃ NH₃, SO₂, NO₂, Br etc.

10. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20, 2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice