

DATA SHEET

Product Name Axial Leaded Type Cement Fixed Resistors

Part Name PRWA Series File No. DIP-SP-028

Uniroyal Electronics Global Co., Ltd.

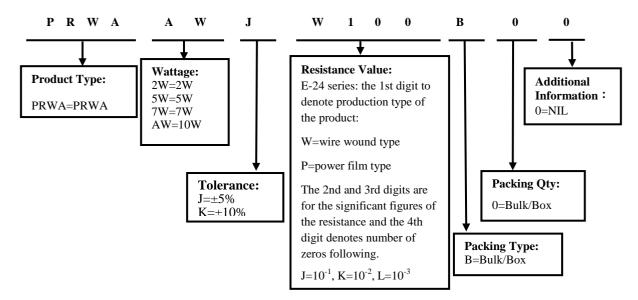
88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. <u>Scope</u>

- 1.1 This datasheet is the characteristics of Axial Leaded Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Non-inductive type available
- 1.5 Excellent flame & moisture resistance
- 1.6 Too low or too high values on Wire-wound& Power -film type can be supplied on a case to case basis

2. Part No. System

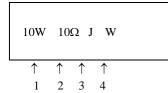

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4th digit will be "0" Example: PRWA=PRWA type
- 2.2 $5^{th} \sim 6^{th}$ digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.Example: 2W=2W; AW=10W
- 2.2.2 For power rating between 20 watt to 99 watt, the 5th and the 6th digits will show the whole numbers of the power rating itself. Example: 20=20W 75=75W
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ K= $\pm10\%$
- 2.4 The 8^{th} to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.
 - Example: $W12J=1.2\Omega$ $W120=12\Omega$ $P273=27K\Omega$
- 2.5 The 12th, 13th & 14th digits.
- 2.5.1The 12th digit is to denote the Packaging Type with the following codes: B=Bulk/Box
- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product .

Example: 0= standard product

3.0 Ordering Procedure

(Example: PRWA $~10W~\pm5\%~10\Omega~B/B$)



4. Marking

Example:

Code description and regulation:

1. Wattage Rating

2. Nominal Resistance Value

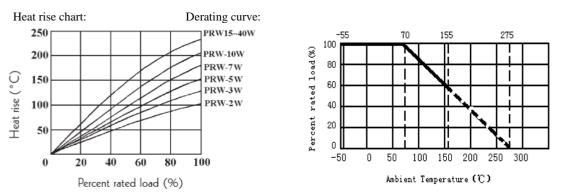
3. Resistance Tolerance. $J: \pm 5\%$

 $\text{K:}\pm10\%$

4. Pattern:

M: Power film

W: Wire wound


Color of marking: Black Ink

5. <u>Ratings & Dimension</u>

+ H	++	+ <u> W</u> +

	Dimension(mm)				Resistance Range		
Туре	W±1	D±1	L±1	H±5	d±0.05	Wire Wound	Power Film
PRWA 2W	7	7	18	28	0.70	0.1Ω~27Ω	28Ω~120 ΚΩ
PRWA 5W	10	9	22	35	0.75	0.1Ω~47Ω	48Ω~150KΩ
PRWA 7W	10	9	35	35	0.75	0.1Ω~680Ω	681Ω~200KΩ
PRWA 10W	10	9	49	35	0.75	0.1Ω~910Ω	911Ω~200KΩ

6. Derating Curve

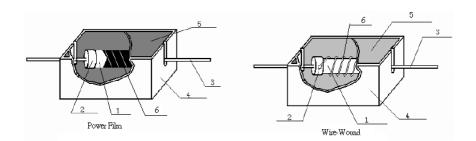
6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or rms ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)


P = power rating (WATT.)

R= nominal resistance (OHM)

7. <u>Structure</u>

No.	Name	material generic name		
1	Body	Al ₂ O ₃		
2	Сар	Tin plated iron		
3	Lead	Copper Wire		
4	Ceramic Case	Al ₂ O ₃ CaO		
5	Filling Materials	SiO ₂		
6	Resistance element	Power film: Metal Oxide Film		
		Wire-wound: NiCr alloys or CuNi alloys		

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	≥20Ω: ±350PPM/°C max <20Ω: ±400PPM/°C max	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (PPM/^{\circ}C)$ $R_1: Resistance Value at room temperature (t_1);$ $R_2: Resistance at test temperature (t_2)$ $t_1: +25^{\circ}C \text{ or specified room temperature}$ $t_2: Test temperature (-55^{\circ}C \text{ or } 125^{\circ}C)$		
Short-time overload	Resistance change rate must be $in\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds.		
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.		
Terminal strength No evidence of mechanical damage		 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 		
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}c$ solder for 10 ± 1 seconds.		
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C±3 °C Dwell time in solder: 2~3seconds. 		
Humidity (Steady state)	Resistance change rate must be $in\pm(5\%+0.05\Omega)$, and no mechanical damage.	 4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2℃ and 90~95%RH relative humidity 		

Load life in humidity	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C ± 2 °C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice