DATA SHEET

Product Name Radial Terminal Type Cement Fixed Resistors

Part Name PRT Series

File No. DIP-SP-036

Uniroyal Electronics Global Co., Ltd.

88\#, Longteng Road, Economic \& Technical Development Zone, Kunshan, Jiangsu, China
Tel +865125763 1411/22/33
Email marketing@uni-royal.cn
Manufacture Plant Uniroyal Electronics Industry Co., Ltd.
Aeon Technology Corporation
Royal Electronic Factory (Thailand) Co., Ltd.
Royal Technology (Thailand) Co., Ltd.
uniohm

1．Scope

This datasheet is the characteristics of Power Metal Fixed Resistors manufactured by UNI－ROYAL．

2．Part No．System

The standard Part No．includes 14 digits with the following explanation：
2．1 For Cement Fixed Resistors，these 4 digits are to indicate the product type but if the product type has only 3digits，the $4^{\text {th }}$ digit will be＂ 0 ＂ Example：PRT0＝PRT type
$2.25^{\text {th }} \sim 6^{\text {th }}$ digits：
2．2．1 For power of 1 watt to 16 watt ，the 5 th digit will be a number or a letter code and the $6^{\text {th }}$ digit will be the letters of W ．
Example：AW＝10W FW＝15W
2．2．2 For power rating between 20 watt to 99 watt，the $5^{\text {th }}$ and the $6^{\text {th }}$ digits will show the whole numbers of the power rating itself．
Example：20＝20W $30=30 \mathrm{~W} \quad 40=40 \mathrm{~W}$
2．3 The $7^{\text {th }}$ digit is to denote the Resistance Tolerance．The following letter code is to be used for indicating the standard Resistance Tolerance． $\mathrm{F}= \pm 1 \% \quad \mathrm{G}= \pm 2 \% \quad \mathrm{~J}= \pm 5 \% \quad \mathrm{~K}= \pm 10 \%$

2．4 The $8^{\text {th }}$ to $11^{\text {th }}$ digits is to denote the Resistance Value．
2．4．1 For Cement Fixed Resistors the $8^{\text {th }}$ digits will be coded with＂W＂or＂P＂to denote Wire－wound type or Power Film type respectively of the Cement Fixed Resistor product．The $9^{\text {th }} \& 10^{\text {th }}$ digits are to denote the significant figures of the resistance and the $11^{\text {th }}$ digit is the number of zeros following．
Example：W12J＝1．2 $\quad \mathrm{W} 120=12 \Omega \quad \mathrm{P} 273=27 \mathrm{~K} \Omega$
2.5 The $12^{\text {th }}, 13^{\text {th }} \& 14^{\text {th }}$ digits．

2．5．1 The $12^{\text {th }}$ digit is to denote the Packaging Type with the following codes： B＝Bulk／Box
2．5．2 The $13^{\text {th }}$ digit is normally to indicate the Packing Quantity，This digit should be filled with＂ 0 ＂for the Cement products with ＂Bulk／Box＂packing requirements．
2．5．3 For some items，the $14^{\text {th }}$ digit alone can use to denote special features of additional information with the following codes or standard product Example：0＝standard product

3．Ordering Procedure （Example：PRT 40W $\pm 5 \% 6 \Omega \mathrm{~B} / \mathrm{B}$ ）

Product Type： PRT0＝PRT

 denote production type of the product：
$\mathrm{W}=$ wire wound type
$\mathrm{P}=$ power film type
The 2nd and 3rd digits are for the significant figures of the resistance and the 4th digit denotes number of zeros following．
$\mathrm{J}=10^{-1}, \mathrm{~K}=10^{-2}, \mathrm{~L}=10^{-3}$

Additional Information： $0=$ NIL

Tolerance：
 $\mathrm{J}= \pm 5 \%$

$\mathrm{K}= \pm 10 \%$
Packing Type：
B＝Bulk／Box
uniohm

4．Marking
Example：

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| 40 W | 6Ω | J | W |
| | | | |
| \uparrow | \uparrow | \uparrow | \uparrow |
| 1 | 2 | 3 | 4 |

Code description and regulation：
1．Wattage Rating
2．Nominal Resistance Value
3．Resistance Tolerance．J：$\pm 5 \%$
$K: \pm 10 \%$
4．Pattern：
M：Power film
W：Wire wound
Color of marking：Black Ink

5．Ratings \＆Dimension

2．1 Dimension（mm）：

Type Dimension	PRT 10W	PRT 15W	PRT 20W	PRT 30W	PRT 40W	PRT 50W
$\mathrm{W} \pm 1.0 \mathrm{~mm}$	10	12.5	12.5	19	19	19
$\mathrm{D} \pm 1.0 \mathrm{~mm}$	9	11.5	13.5	19	19	19
$\mathrm{L} \pm 1.5 \mathrm{~mm}$	48	48	63	75	90	90
$\mathrm{P} \pm 1.0 \mathrm{~mm}$	32	32	44	54	70	70
$\mathrm{H} \pm 1.0 \mathrm{~mm}$	18	21	21	32	32	32
$\mathrm{A} \pm 0.5 \mathrm{~mm}$	12	12	12	18	18	18
$\mathbf{H 1} \pm 0.4 \mathrm{~mm}$	5.5	6.2	6.2	7.6	7.6	7.6
$\mathrm{C} \pm 0.5 \mathrm{~mm}$	3	3	3	3	3	3
$\mathrm{F} \pm 0.5 \mathrm{~mm}$	8.7	8.0	10	9.5	9.5	9.5
$\mathrm{G} \pm 0.5 \mathrm{~mm}$	5	6	6	7.5	7.5	7.5
$\mathrm{E} \pm 1.0 \mathrm{~mm}$	3	3	3	4	4	4
Ø1 $\pm 0.2 \mathrm{~mm}$	4.1	4.1	4.1	4.1	4.1	4.1
Ø $2 \pm 0.2 \mathrm{~mm}$	2.5	2.5	2.5	3.2	3.2	3.2
W1 $\pm 0.08 \mathrm{~mm}$	0.5	0.5	0.5	0.5	0.5	0.5

uniohm

6．Derating Curve

6．1 Voltage rating：
Resistors shall have a rated direct－current（DC）continuous working voltage or an approximate sine－wave root－mean－square（RMS）alternating－ current（AC）continuous working voltage at commercial－line frequency and waveform corresponding to the power rating，as determined from the following formula：
$R C W V=\sqrt{P \times R}$
Where：RCWV＝rated dc or RMS ac continuous working voltage at
commercial－line frequency and waveform（VOLT．）
$\mathrm{P}=$ power rating（WATT．） $\mathrm{R}=$ nominal resistance（OHM）
7．Structure

No．	Name	Material Generic Name
	Body	$\mathrm{Al}_{2} \mathrm{O}_{3}$
2	Filling materials	SiO_{2}
3	Ceramic case	$\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{CaO}$
4	Bracket	Iron
5	Terminal lug	Steel（tin plated iron surface）
6	Resistance element	Power Film：Metal Oxide Film
		Wire－Wound：Alloy Wire

8．Performance Specification

Characteristic	Limits	Test Methods （GB／T5729\＆JIS－C－5201\＆IEC60115－1）
Temperature Coefficient	$\begin{aligned} & \geqq 20 \Omega: \pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & <20 \Omega: \pm 400 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{aligned}$	4．8 Natural resistance changes per temp．Degree centigrade $\begin{aligned} & \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right) \\ & \mathrm{R}_{1}: \text { Resistance Value at room temperature }\left(\mathrm{t}_{1}\right) ; \\ & \mathrm{R}_{2}: \text { Resistance at test temperature }\left(\mathrm{t}_{2}\right) \\ & \mathrm{t}_{1:}+25^{\circ} \mathrm{C} \text { or specified room temperature } \\ & \mathrm{t}_{2}: \text { Test temperature }\left(-55^{\circ} \mathrm{C} \text { or } 125^{\circ} \mathrm{C}\right) \end{aligned}$
Short－time overload	Resistance change rate is： $\pm(5 \%+0.05 \Omega)$ Max．With no evidence of	4．13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds．

	mechanical damage．	
Dielectric withstanding voltage	No evidence of flashover mechanical damage，arcing or insulation break down．	4．7 Resistors shall be clamped in the trough of a 90° metallic V－ block and shall be tested at AC potential respectively specified in the above list for 60－70 seconds．for cement fixed resistors the testing voltage is 1000 V ．
Terminal strength	No evidence of mechanical damage	4．16 Direct load： Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads． Twist test： Terminal leads shall be bent through 90° at a point of about 6 mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations．
Resistance to soldering heat	Resistance change rate is： $\pm(1 \%+0.05 \Omega)$ Max．With no evidence of mechanical damage	4．18 Permanent resistance change when leads immersed to a point $2.0-2.5 \mathrm{~mm}$ from the body in $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ solder for 10 ± 1 seconds．
Solderability	95\％coverage Min．	4．17 The area covered with a new，smooth，clean，shiny and continuous surface free from concentrated pinholes． Test temp．Of solder： $245^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ Dwell time in solder： $2 \sim 3$ seconds．
Humidity （Steady state）	Resistance change rate is： $\pm(5 \%+0.05 \Omega)$ Max．With no evidence of mechanical damage．	4．24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40 \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \% \mathrm{RH}$ relative humidity
Load life in humidity	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	7．9 Resistance change after 1，000 hours（1．5 hours＂ON＂， 0.5 hour＂OFF＂）at RCWV in a humidity test chamber controlled at 40 ${ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity．
Load life	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	4．25．1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours＂ON＂， 0.5 hour＂OFF＂at 70 ${ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ambient．
Low Temperature Storage	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	IEC 60068－2－1（Aa） Lower limit temperature，for 2H．
High Temperature Exposure	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	MIL－STD－202 108A Upper limit temperature ，for 16 H ．

uniohm
almoder

9．Note
9．1．UNI－ROYAL recommend products store in warehouse with temperature between 15 to $35^{\circ} \mathrm{C}$ under humidity between 25 to $75 \% \mathrm{RH}$ ．
Even under storage conditions recommended above，solder ability of products will be degraded stored over 1 year old．
9．2．Cartons must be placed in correct direction which indicated on carton，otherwise the reel or wire will be deformed．
9．3．Storage conditions as below are inappropriate：
a．Stored in high electrostatic environment
b．Stored in direct sunshine，rain，snow or condensation．
c．Exposed to sea wind or corrosive gases，such as $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{Br}$ etc．

10．Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	$1 \sim 6$	Mar．20，2018	Haiyan Chen	Nana Chen
2	Modify characteristic	$4 \sim 5$	Feb．26，2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov．20，2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov．07，2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co．，Ltd．All rights reserved．Specification herein will be changed at any time without prior notice

