

DATA SHEET

Product Name Power Alloy Wire-wound Resistors

Part Name QH, QL, QW, QR, QRZG Series

File No. DIP-SP-050

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope:

- 1.1 This datasheet is the characteristics of power alloy wire-wound Resistors manufactured by UNI-ROYAL.
- 1.2 Multi-terminal type & variable types available
- 1.3 Small in size but capable of carrying high power load
- 1.4 Resistance value unchanged after long use, good resistivity to short time overload
- 1.5 High resistivity to heat, small resistance temperature coefficient and the change in resistance with temperature being linear
- 1.6 Too low or high ohmic value can be supplied case to case basis
- 1.7 Adjustable & Multi-Resistor type is available
- 1.8 Non-inductive type is available

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: QH00=QH type; QL00=QL type; QR00=QR Type; QRZG=QRZG Type
- $2.2.5^{th} \sim 6^{th}$ digits:
- 2.2.1 For power rating between 20 watt to 99 watt, the 5th and the 6th digit will show the whole numbers of the power rating itself Example:

20=20W: 75=75W

- 2.2.2 For power rating of 100W and over, the 5^{th} & the 6^{th} digits will be indicated with "00" and the actual wattage being indicated at the last 3 digits ($12^{th} \sim 14^{th}$) of the part No.
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

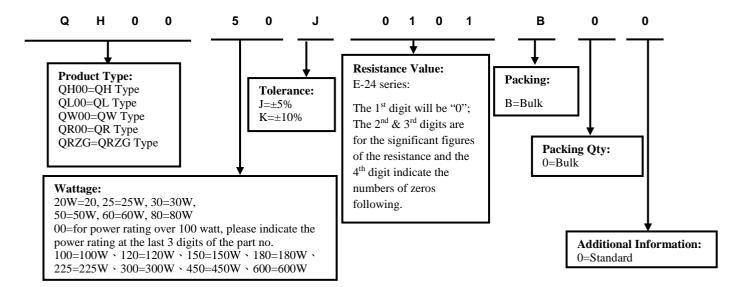
 $F=\pm 1\% \qquad G=\pm 2\% \qquad J=\pm 5\% \qquad K=\pm 10\%$ 2.4 The 8^{th} to 11th digits is to denote the Resistance Value.

2.4.1For the standard resistance values of E-24 series, the 8th digit is "0",the 9th & 10th digit are to denote the significant figures of the resistance and the 11th digit is the numbers of zeros following.

Example:

$$0120=12\Omega$$
 $0273=27K\Omega$

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

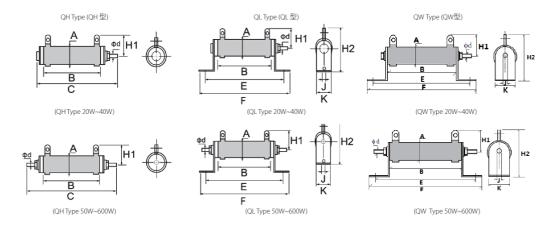

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product
- 2.5.4 for power rating over 100 watt, please indicate the power rating at the last 3 digits of the part no.

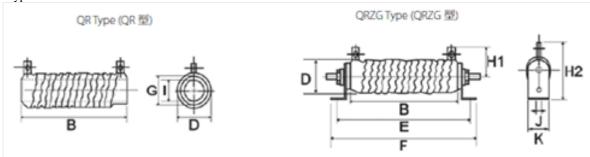
Example: 100=100W; 120=120W

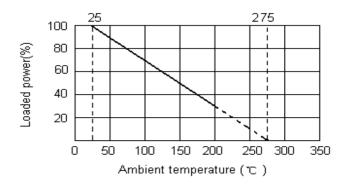
3. Ordering Procedure

(Example: QH 50W \pm 5% 100 Ω B/B)



4. Ratings & Dimension QH&QL Type:


	Dimension(mm)									Resistance	
Type₽	A±2₽	B₽	C±2₽	EΘ	F₽	H1±2₽	H2±2¢	J±1₽	K±1₽	Φd±0.05₽	Range₽
QH/QL·20W	22₽	50±2₽	70₽	75±2₽	102±2₽	25₽	50₽	5₽	19₽	4₽	1Ω~10KΩ <i>₀</i>
QW·20W₽	220	30±2₽		66±2₽	93±2₽						
QH/QL·25W₽	22₽	60±2₽	814	84±2₽	110±2₽	25₽	50€	5₽	19₽	4₽	2Ω~12ΚΩ₽
QW·25W₽	220			75±2₽	101±2₽	254					
QH/QL·30W₽	22₽	75±2₽	95₽	99±2₽	126±2₽	25∉	50₽	5₽	19₽	4₽	2Ω~15ΚΩ₽
QW·30W₽	224			90±2₽	117±2₽	25€					
QH/QL·40W₽	22₽	90±2₽	112₽	114±2₽	141±2₽	25₽	50₽	5₽	19₽	4₽	2Ω~20ΚΩ∂
QW·40W₽	2,24	90±2₽		105±2₽	132±2₽	234					
QH/QL·50W₽	30₽	75±2₽	110₽	103±2₽	133±2₽	34₽	64₽	6.3₽	27₽	5₽	3Ω~25KΩ₽
QW·50W₽	300			91±2₽	121±2₽	34*					
QH/QL·60W₽	30€	90±2₽	126₽	117±2₽	147±2₽	34₽	64₽	6.3₽	27₽	5₽	3Ω~30KΩø
QW·60W₽	30₽			105±2₽	135±2₽						332~30K320
QH/QL⋅80W↔	30₽	115±2ø	150₽	143±2₽	173±2₽	34₽	64₽	6.3₽	27₽	5₽	3Ω~40ΚΩ₽
QW·80W₽	300			131±2₽	161±2₽						
QH/QL·100W₽	30₽	140±2¢	173₽	166±2₽	197±2₽	34₽	64₽	6.3₽	27₽	5∉	3Ω~50ΚΩ₽
QW·100W₽	300			154±2₽	185±2₽			0.5+			
QH/QL·120W	30₽	165±2¢	200	193±2₽	223±2₽	34₽	64₽	6.3₽	27₽	5₽	4Ω~60ΚΩ₽
QW·120W₽	300			181±2₽	211±2₽						
QH/QL·150W₽	30₽	195±2₽	2300	224±2₽	254±2₽	34₽	64₽	6.3₽	27₽	5€	4Ω~70KΩ₽
QW·150W₽	300			212±2₽	242±2₽	340					422~ / UK320
QH/QL·200W	30₽	254±2¢	289₽	282±2₽	312±2₽	34₽	64₽	6.5₽	27₽	5€	5Ω~100KΩ∘
QW·200W₽	304			270±2₽	300±2₽						332~100K32
QH/QL·300W	42₽	254±2₽	292₽	285±2₽	332±2₽	45₽	87₽	6.5₽	39₽	5₽	8Ω~150KΩ₽
QW·300W₽				273±2₽	320±2₽						032~130 K 32
QH/QL·400W	42₽	330±3₽	364₽	364±3₽	410±3₽	45₽	87₽	6.5₽	39₽	5₽	10Ω~200ΚΩ∞
QW·400W₽				352±3₽	398±3₽						
QH/QL·600W₽	42₽	2.0±3.0	3₽ 458₽	451±3₽	498±3₽	45₽	87₽	6.5₽	39₽	5₽	10Ω~200KΩ»
QW-600W₽	420			439±3₽	486±3₽						1032~200K32


QR&QRZG Type:

Type	Dimension(mm)								Resistance		
	В	D±4	Е	F	G±2	H1±2	H2±2	I±2	J±1	K±1	Range
QR/QRZG120W	115±2	36	143±2	173±2	28	34	64	16	6.3	27	$0.2\Omega{\sim}4\Omega$
QR/QRZG150W	140±2	36	166±2	197±2	28	34	64	16	6.3	27	0.3Ω~5Ω
QR/QRZG180W	165±2	36	193±2	223±2	28	34	64	16	6.3	27	$0.3\Omega{\sim}6\Omega$
QR/QRZG225W	195±2	36	224±2	254±2	28	34	64	16	6.3	27	$0.4\Omega \sim 8\Omega$
QR/QRZG300W	254±2	36	282±2	312±2	28	34	64	16	6.3	27	0.5Ω~10Ω
QR/QRZG450W	254±2	48	285±2	332±2	40	45	87	25	6.5	39	0.8Ω~15Ω
QR/QRZG600W	330±3	48	364±3	410±3	40	45	87	25	6.5	39	1Ω~20Ω
QR/QRZG750W	300±3	58	332±3	384±3	50	57	102	34	8	48	1Ω~75Ω
QR/QRZG1000W	390±3	58	423±3	475±3	50	57	102	34	8	48	1Ω~100Ω

5. Derating Curve

Derating curve:

5.1 Voltage rating:

Resistors shall have a rated direct-current (AC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

6. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)				
Temperature Coefficient	≥20Ω: ±300PPM/°C <20Ω: ±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{$				
Short-time overload	Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.				
Insulation resistance	Insulation resistance is: $20 \text{ M}\Omega$ Min.	4.6 The measuring voltage shall be equal to the dielectric withstanding voltage for resistor with an isolation voltage <500V or (500±50)V DC, for resistors with an isolation voltage≥500V.				
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.				
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5Kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.				
Resistance to soldering heat	Resistance change rate is: $\pm (1\% + 0.05\Omega) \text{Max. With no evidence of} \\$ mechanical damage	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5°°C solder for 10±1 seconds.				
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245 °C ± 3 °C Dwell time in solder: 2~3 seconds.				
Humidity (Steady state)	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max. With no evidence of mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity				
Load life in humidity	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max. With no evidence of mechanical damage.	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at 40°C±2°C and 90 to 95% relative humidity.				

Load life	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max. With no evidence of mechanical damage.	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ambient.
Low Temperature Storage	Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max. With no evidence of mechanical damage.	MIL-STD-202 108A Upper limit temperature , for 16H.

7. <u>Note</u>

- 7.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 7.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 7.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

8. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~6	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	Add the QW type	1~6	May.15, 2023	Haiyan Chen	Yuhua Xu

[©] Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice