

DATA SHEET

Product Name Wire-wound Anti-Surge Fixed Resistors

Part Name KNPA Series File No. DIP-SP-012

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Wire-wound Anti-Surge Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Excellent flame retardant coating
- 1.3 According to IEC 61000-4-5
- 1.4 Applies to electricity meters, home appliance and ballast

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Wire-Wound Fixed Resistors type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.

Example: KNPA= Wire-Wound Anti-Surge Fixed Resistors type.

- $2.2.5^{th} \sim 6^{th}$ digits:
- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1"~"G"to denotes"1"~"16"as

Hexadecimal:

 $1/16W\sim1/2W (<1W)$

Wattage		1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16
Normal Size	W2	W3	W4	W5	W6	W8	WA	WG	
Small Size		S2	S3	S4	S5	S6	S8	SA	SG
1W~16W (≧1W)									
Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1 S	2S	3S	5S	7S	8S	9S	AS	FS

2.2.2 For power rating less than 1 watt, the 5^{th} digit will be the letters W, S or U to represent the size required & the 6^{th} digit will be a number or a letter code.

Example: WA=1/10W

2.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W or S.

Example: AS=10W-S; 3S=3W-S

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

$$F=\pm 1\%$$
 $G=\pm 2\%$ $J=\pm 5\%$ $K=\pm 10\%$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of 5% series, the 8th digit is "0",the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.;
- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0=10^0$$
 $1=10^1$ $2=10^2$ $3=10^3$ $4=10^4$ $5=10^5$

$$6=10^6$$
 J= 10^{-1} K= 10^{-2} L= 10^{-3} M= 10^{-4}

2.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box

T=Tape/Reel P=Tape/Box of PT-26 products

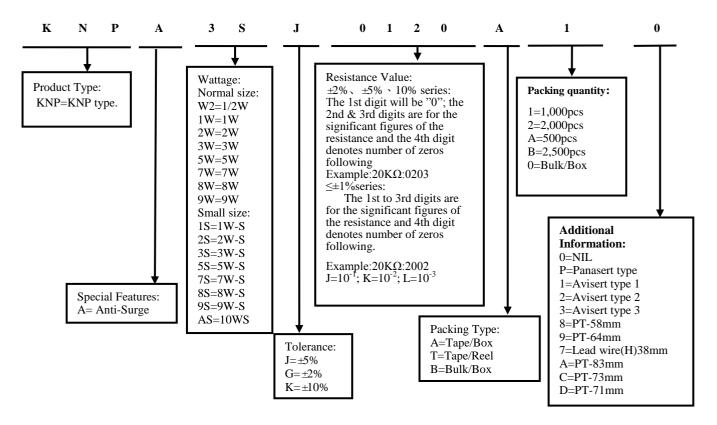
2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code or number code is to be used for some packing quantities:

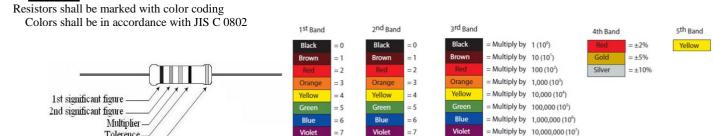
A=500pcs 1=1000pcs 2=2000pcs 5=5000pcs

2.4.5 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

0=NIL P=Panasert type 0=NIL 1=Avisert type 1 2=Avisert type 2

3=Avisert type 3





3. Ordering Procedure

(Example: KNPA 3WS $\pm 5\%$ 12 Ω T/B-1000)

4. Marking

= 7

= 8

4.3 Label:

Label shall be marked with following items:

Tolerence

(1) Type and style

Yellow color code for Anti-Surge

- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM

Example:

= 7

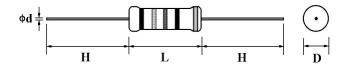
=8

Wire-wound Anti-Surge Fixed Resistors

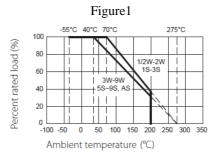
= Multiply by 0.1 (10⁻¹)

= Multiply by 0.01 (10⁻²)

WATT: 8W VAL: 22Ω Q'TY: 25 TOL: 5% LOT: 7021528 PPM:



5. Ratings & Dimension


5.1 Dimension:

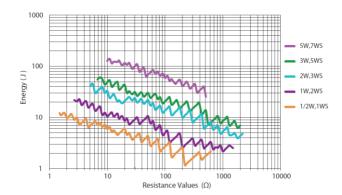
Tymo	Dimension(mm)					Desigtance Banco	T-1
Type	D±1	L±1	d±0.05	H±3	PT	Resistance Range	Tolerance
KNPA 1/2W,1WS	3.5	9.5	0.54	28	52	10Ω~820Ω	
KNPA 1W,2WS	4.5	11.5	0.70	25	52	10Ω~1.2ΚΩ	
KNPA 2W,3WS	5.5	15.5	0.70	28	64	10Ω~3.0ΚΩ	
KNPA 3W,5WS	6.5	17.5	0.75	28	64	10Ω~3.9ΚΩ	ı. 5 .0/
KNPA 5W,7WS	8.5	24.5	0.75	38	90	10Ω~5.6ΚΩ	±5%
KNPA 7W,8WS	8.5	29.5	0.75	38	B/B	10Ω~8.2ΚΩ	
KNPA 8W,9WS	8.5	39.5	1.00	38	B/B	10Ω~10ΚΩ	
KNPA 9W,AS	8.5	52.5	1.00	38	B/B	10Ω~15ΚΩ	

6. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derate as shown in figure 1

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

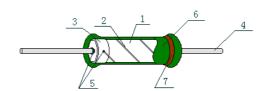

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. Pulses Energy Curve



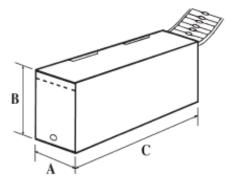
8. <u>1.2/50us Pulses Voltage Curve</u>

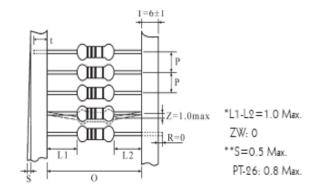
9. Structure

No.	Name	Raw materials			
1	Basic body	Rod Type Ceramics			
2	Resistor	Ni-Cr &Cu-Ni Alloys			
3	End cap	Steel (Tin Plated iron Surface)			
4	Lead wire	Tin solder coated copper wire			
5	Joint	By welding			
		Normal size & Insulated Non-Flame Paint			
6	Coating	Color: Deep Green (Normal size)			
		Light Green (small size)			
7	Marking	Epoxy Resin			

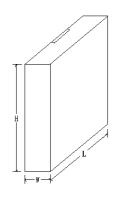
10. Performance Specification

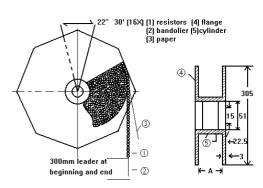
Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	±200PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 \text{ (PPM/°C)}$ $R_1: \text{ Resistance Value at room temperature } (t_1);$ $R_2: \text{ Resistance at test temperature } (t_2)$ $t_1: +25 \text{ C or specified room temperature}$ $t_2: \text{ Test temperature } (-55 \text{ C or } 125 \text{ °C})$
Short-Time Overload	Resistance change rate must be in $\pm (2\% + 0.05\Omega) Max$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 10 times Power for 5 seconds.
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.


Resistance to soldering heat	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5 °C solder for 10±1 seconds.
Solderability	95% Coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder: 245°C ±3°C Dwell time in solder: 2~3seconds.
Rapid change of temperature	Resistance change rate must be in $\pm (2\%+0.05\Omega)$, and no mechanical damage.	4.19 30 min at -55 ℃ and 30 min at 155 ℃; 100 cycles.
Humidity (steady state)	Resistance change rate must be in \pm (2%+0.05 Ω) , and no mechanical damage.	4.24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40 ± 2 °C and 90-95% relative humidity,
Load life in humidity	Resistance change rate must be in $\pm (5\%+0.05\Omega)$, and no mechanical damage.	7.9 resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and 90 to 95% relative humidity.
Surge Immunity	Resistance change rate is: ±(5%+0.05Ω) Max	Surge voltageas per the 1.2 μ s/50 μ s exponential open circuit voltage waveform according to IEC 61000-4-5 standard as shown below: $U(\%) \text{ pulse voltage}$ $U(\%) \text{ pulse voltage}$ $10.0 \text{ pulse voltage}$ Front time: $T_1 = 1.67 \text{ x T} = 1.2 \text{ ps} \pm 30 \text{ %}$ Time to half-value: $T_2 = 50 \text{ µs} \pm 20 \text{ %}$
Resistance to solvent	No deterioration of protective coatings & markings	4.29 Specimens shall be immersed in a bath of trichloroethylene completely for 3 min. With ultrasonic
Load life	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$, and no mechanical damage.	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70 °C ±2 °C ambient.
Low Temperature Storage	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$, and no mechanical damage.	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.
High Temperature Exposure	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$, and no mechanical damage.	MIL-STD-202 108A Upper limit temperature , for 16H.



11. Packing 11.1 Tapes in Box Packing:



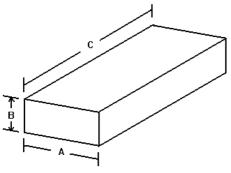


Dimension	of	T/B	(mm)

						71 1/2 (11111)
Part No.	O	P	A±5	B±5	C±5	Qty/Box
KNPA 1/2W	52±1	5±0.3	75	45	255	1,000pcs
KNPA 1WS	52 ±1	5±0.3	75	45	255	1,000pcs
KNPA 1W	52±1	5±0.3	86	82	255	1,000pcs
KNPA 2WS	52±1	5±0.3	86	82	255	1,000pcs
KNPA 2W	64±5	10±0.5	90	119	255	1,000pcs
KNPA 3WS	64±5	10±0.5	90	119	255	1,000pcs
KNPA 3W	64±5	10±0.5	90	88	255	500pcs
KNPA 5WS	64±5	10±0.5	90	88	255	500pcs
KNPA 5W	90±5	10±0.5	115	124	500	500pcs
KNPA 7WS	90±5	10±0.5	115	124	500	500pcs

11.2 Tapes in Reel Packing:

Dimension of Reel (mm)


Part No.	О	A	W ±5	H±5	L±5	Qty/Box
KNPA 1/2W	52±1	73 <u>±2</u>	85	295	293	2,500pcs
KNPA 1WS	52±1	73 <u>±2</u>	85	295	293	2,500pcs
KNPA 1W	52±1	73 <u>+2</u>	85	295	293	2,500pcs
KNPA 2WS	52±1	73 <u>+2</u>	85	295	293	2,500pcs
KNPA 2W	64±5	80±5	95	295	293	1,000pcs
KNPA 3WS	64±5	80±5	95	295	293	1,000pcs
KNPA 3W	64±5	80±5	95	295	293	1,000pcs
KNPA 5WS	64±5	80±5	95	295	293	1,000pcs
KNPA 5W	90±5	115±5	121	310	310	700pcs
KNPA 7WS	90±5	115±5	121	310	310	700pcs

11.3 Bulk in Box Packing:

				Dimension of Box (mm)
Part No.	A±5	B±5	C±5	Qty/Box
KNPA 1/2W	140	80	240	250/5,000pcs
KNPA 1WS	140	80	240	250/5,000pcs
KNPA 1W	140	80	240	100/2,500pcs
KNPA 2WS	140	80	240	100/2,500pcs
KNPA 2W	140	80	240	100/1,500pcs
KNPA 3WS	140	80	240	100/1,500pcs
KNPA 3W	140	80	240	100/1,000pcs
KNPA 5WS	140	80	240	100/1,000pcs
KNPA 5W	140	80	240	25/400pcs
KNPA 7WS	140	80	240	25/400pcs
KNPA 7W	140	80	240	25/300pcs
KNPA 8WS	140	80	240	25/300pcs
KNPA 8W	140	80	240	25/200pcs
KNPA 9WS	140	80	240	25/200pcs
KNPA 9W	140	80	240	25/200pcs
KNPA 10WS	140	80	240	25/200pcs

12. <u>Note</u>

- 12.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 ℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 12.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 12.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

13. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~8	Mar.20, 2018	Haiyan Chen	Nana Chen
2	1.Modify the Derating Curve 2. Add the Pulses Energy Curve and Pulses Voltage Curve 3. Modify characteristic	4 5 6~7	Feb.23, 2019	Haiyan Chen	Yuhua Xu
3	Modify the Paint color	5	Jun.24, 2019	Haiyan Chen	Yuhua Xu
4	Modify the size of 8W to 10WS wires from "0.75" to "1.00"	4	Mar.15, 2022	Haiyan Chen	Yuhua Xu
5	Modify the temperature coefficient test conditions	6	Oct.28, 2022	Haiyan Chen	Yuhua Xu
6	 Modify the marking identifier Cancel Surge Rating 	3 4	Jul.27, 2023	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice