

DATA SHEET

Product Name Cement Heating Fixed Resistors

Part Name PRWL 3W Series File No. DIP-SP-062

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33	
Email	marketing@uni-royal.cn	
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.	
	Aeon Technology Corporation	
	Royal Electronic Factory (Thailand) Co., Ltd.	
	Royal Technology (Thailand) Co., Ltd.	

1. <u>Scope:</u>

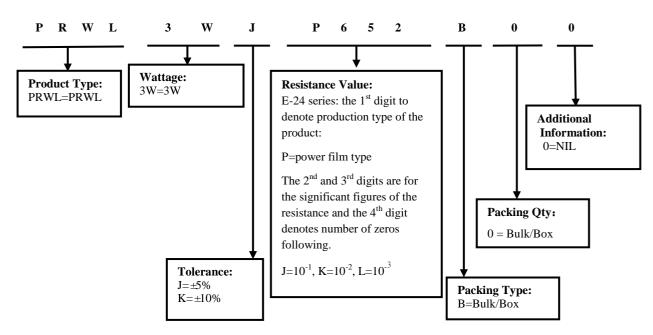
- 1.1 This datasheet is the characteristics of Cement Heating Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Double resistor design, high calorific value, high power, strong pressure resistance
- 1.3 For electrical mosquito repeller
- 1.4 For fragrance diffuser

2. Part No. System:

The standard Part No. includes 14 digits with the following explanation:

2.1 For Arc porcelain shell Fixed resistor, these 4 digits are to indicate the product type .

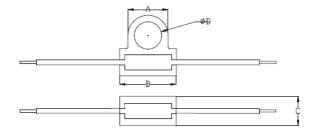
Example: PRWL=PRWL- type

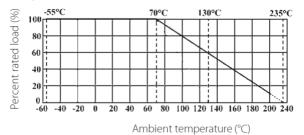

- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W. Example: 3W=3W;
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$; $K=\pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th & 10^{th} digits are to denote the significant figures of the resistance and the 11^{th} digit is the number of zeros following. Example: P652=6.5K Ω

 $0 = 10^{0} \quad 1 = 10^{1} \quad 2 = 10^{2} \quad 3 = 10^{3} \quad 4 = 10^{4} \quad 5 = 10^{5} \quad 6 = 10^{6} \quad J = 10^{-1} \quad K = 10^{-2} \quad L = 10^{-3} \quad M = 10^{-4} \quad M = 10^$

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1The 12th digit is to denote the Packaging Type with the following codes:B=Bulk/Box
- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for theCemen products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure


(Example: PRWL 3W ±5% 6.5KΩ B/B)


4.<u>Dimension</u> (Unit: mm)

Туре	A±0.3	B±0.4	C±0.3	ØD±0.4	Tolerance	Resistance Range
PRWL 3W	12.6	18.3	8.9	9.4	$\pm 5\% \& \pm 10\%$	5K6~16K

5. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55°C to 70°C. For temperature in excess of 70°C, the load shall be derate as shown in figure 1

5.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

6. <u>Performance Specification</u>

Characteristic	Limits	Test Method (GB/T5729&JIS-C-5201&IEC60115)			
Temperature Coefficient	±350PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ $R_1: Resistance Value at room temperature (t_1);$ $R_2: Resistance at test temperature (t_2)$ $t_1: +25 \ C \text{ or specified room temperature}$ $t_2: Test temperature (-55^{\circ}C \text{ or } 125^{\circ}C)$			
Short-time overload	$\Delta R/R: \pm (5\% + 0.05\Omega)$ and no mechanical damage.	4.13 4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds			
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90 metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.			

Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder:245±3°C; Dwell time in solder: 2~3 seconds.		
Rapid change of temperature	Δ R/R: ±(2.0%+0.05 Ω) and no mechanical damage.	4.19 30 min at -55 °C and 30 min at 155 °C; 100 cycles.		
Load life in humidity	Δ R/R: ±(5.0% ±0.05 Ω) and no mechanical damage.	4.24 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at 40 $^{\circ}C \pm 2^{\circ}C$ and 93 $\pm 3\%$ relative humidity.		
Load life	Δ R/R: ±(5.0% ±0.05 Ω) and no mechanical damage.	4.25.1 4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70 °C ± 2 °C ambient.		

7. <u>Note</u>

7.1 UN-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity :25%~75%. (Put condition for individual product)
Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) many be degraded.

- 7.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
- Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 7.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic
 - b. Storage in direct sunshine > rain and snow or condensation
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, NO₂.

8. Record

Version	Description of amendment	Page	Date	Amended by	Checked by
1	First issue of this specification	1~4	Jul.06, 2023	Fucong Liu	Haiyan Chen