

DATA SHEET

Product Name Wire-Wound Semi-Finished Product Resistors

Part Name WWR Series File No. DIP-SP-085

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

Wire-Wound Semi-Finished Product Resistors

1. Scope

This datasheet is the characteristics of Wire-Wound Semi-Finished Product Resistors manufactured by UNI-ROYAL.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 1th ~4th digits

This is to indicate the Chip Resistor. Example: WWR0= Wire-Wound Semi-Finished Product Resistors

2.2 5th~6th indicate material size.

Example: $26=3\times12$; $27=7\times15$; $15=7\times51$; $25=7\times100$

- 2.3 The 7^{th} digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of 5% & 10% series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

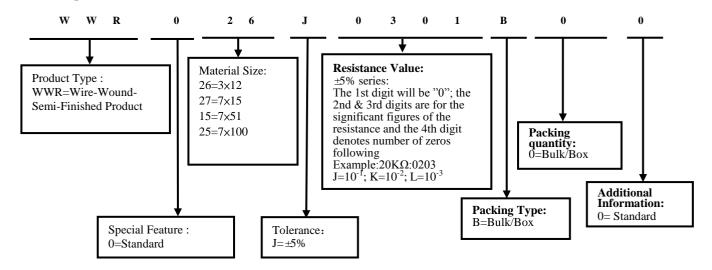
For the standard resistance values of \leq 2% series in, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11^{th} digit is the zeros following.

- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11^{th} digit: $0=10^0$ $1=10^1$ $2=10^2$ $3=10^3$ $4=10^4$ $5=10^5$ $6=10^6$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$
- 2.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Reel packaging types. The following letter code is to be used for some packing quantities:

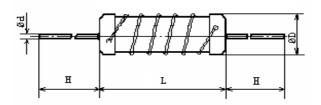

0=Bulk/Box

2.4.5 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

0=Standard

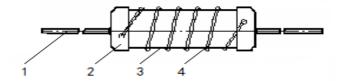
3. Ordering Procedure

(Example: WWR $3\times12\pm5\%$ 300Ω B/B)



Wire-Wound Semi-Finished Product Resistors

4. <u>Dimension</u>



Unit: mm

Туре	Power	Size	L	ФD	H±0.5	Фd±0.05	Resistance Range
WWR	1/2W	3×12	12.19-12.87	3.48-3.63	6	0.75	0.01Ω~390Ω
	2W	7×15	15.19-15.87	7.50-7.70	6	0.75	0.01Ω~3.0ΚΩ
	8WS	7×51	50.50-52.60	7.50-7.70	6	0.75	0.1Ω~8.2ΚΩ
	10WS	7×100	100.00-102.00	7.50-7.70	6	1.00	0.22Ω~15ΚΩ

^{* &}quot;H" can be selected according to customer demand 6~38mm

5. Structure

No.	Name	Raw materials
1	Lead wire	Tin solder coated copper wire
2	End cap	Steel (Tin Plated iron Surface)
3	Basic body	Rod Type Ceramics
4	Resistor	Ni-Cr Alloys

6. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
		4.8 Natural resistance changes per temp. Degree centigrade R ₂ -R ₁		
		$\times 10^6 (\text{PPM/°C})$		
Temperature	$\geq 20\Omega$: ± 300 PPM/°C.	$R_1(t_2-t_1)$		
Coefficient	<20Ω: ±400PPM/°C	R_1 : Resistance Value at room temperature (t_1) ;		
		R_2 : Resistance at test temperature (t_2)		
		$t_{1:}$ +25 °C or specified room temperature		
		t _{2:} Test temperature (-55°C or 125°C)		
		4.17 The area covered with a new, smooth, clean, shiny and		
0.11.1114	95% coverage Min.	continuous surface free from concentrated pinholes.		
Solderability		Test temp. Of solder: $245^{\circ}\text{C} \pm 3^{\circ}\text{C}$		
		Dwell time in solder2~3 seconds.		
		4.16 Direct load:		
		Resistance to a 2.5 kg direct load for 10 seconds in the direction o		
		the longitudinal axis of the terminal leads.		
m 1 1	No evidence of mechanical damage	Twist test:		
Terminal strength		Terminal leads shall be bent through 90°at a point of about 6mm		
		from the body of the resistor and shall be rotated through 360°		
		about the original axis of the bent terminal in alternating direction		
		for a total of 3 rotations.		

Wire-Wound Semi-Finished Product Resistors

7. Precaution for storage/Transportation

- 7.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 7.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 7.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

8. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~4	May.10, 2023	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice