DATA SHEET

Product Name Radial Type Cement Fixed Resistors

Part Name PRM Series

File No. DIP-SP-029

Uniroyal Electronics Global Co., Ltd.

88\#, Longteng Road, Economic \& Technical Development Zone, Kunshan, Jiangsu, China

Tel	$+8651257631411 / 22 / 33$
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation
Royal Electronic Factory (Thailand) Co., Ltd.
Royal Technology (Thailand) Co., Ltd.

1．Scope
This datasheet is the characteristics of Radial Type Cement Fixed Resistors manufactured by UNI－ROYAL．
1．1 Compliant with RoHS directive．
1．2 Halogen free requirement．

2．Part No．System

The standard Part No．includes 14 digits with the following explanation：
2．1 For Cement Fixed Resistors，these 4 digits are to indicate the product type but if the product type has only 3digits，the 4 th digit will be＂ 0 ＂ Example：PRM0＝PRM－type
$2.25^{\text {th }} \sim 6^{\text {th }}$ digits：
2．2．1 For power of 1 watt to 16 watt ，the 5 th digit will be a number or a letter code and the 6 th digit will be the letters of W ． Example： $5 \mathrm{~W}=5 \mathrm{~W}$ ； $\mathrm{AW}=10 \mathrm{~W}$ ；
2．2．2 For power rating Between 20 watt to 99 watt，the $5^{\text {th }}$ and the $6^{\text {th }}$ digits will show the whole numbers of the power rating itself．

$$
\text { Example: 20=20W } 75=75 \mathrm{~W}
$$

2．3 The $7^{\text {th }}$ digit is to denote the Resistance Tolerance．The following letter code is to be used for indicating the standard Resistance Tolerance．

$$
\mathrm{J}= \pm 5 \% \quad \mathrm{~K}= \pm 10 \%
$$

2．4 The $8^{\text {th }}$ to $11^{\text {th }}$ digits is to denote the Resistance Value．
2．4．1 For Cement Fixed Resistors the $8^{\text {th }}$ digits will be coded with＂W＂or＂P＂to denote Wire－wound type or Power Film type respectively of the Cement Fixed Resistor product．the $9^{\text {th }} \& 10^{\text {th }}$ digits are to denote the significant figures of the resistance and the $11^{\text {th }}$ digit is the number of zeros following

Example：W12J＝1．2 $\quad \mathrm{W} 120=12 \Omega \quad \mathrm{P} 273=27 \mathrm{~K} \Omega$
2．5 The $12^{\text {th }}, 13^{\text {th }} \& 14^{\text {th }}$ digits．
2．5．1 The 12th digit is to denote the Packaging Type with the following codes： $\mathrm{B}=\mathrm{Bulk} / \mathrm{Box}$
2．5．2 The $13^{\text {th }}$ digit is normally to indicate the Packing Quantity，This digit should be filled with＂ 0 ＂for the Cement products with
＂Bulk／Box＂packing requirements．
2．5．3 For some items，the $14^{\text {th }}$ digit alone can use to denote special features of additional information with the following codes or standard product

Example： $0=$ standard product

3．Ordering Procedure

（Example：PRM 5W $\pm 5 \% 120 \mathrm{~K} \Omega \mathrm{~B} / \mathrm{B}$ ）

Packing Type：
B＝Bulk／Box
uniohm uniohm

4．Marking

Example：

Code description and regulation：
1．Wattage Rating
2．Nominal Resistance Value
3．Resistance Tolerance．J：$\pm 5 \%$

$$
K: \pm 10 \%
$$

4．Pattern：
M：Power film
W：Wire wound
Color of marking：Black Ink
Note：The marking code shall be prevailed in kind！

5．Ratings \＆Dimension

Type	Dimension（mm）					Max Working Voltage	Max Overload Voltage	Resistance Range	
	$\mathrm{W} \pm 1$	$\mathrm{D} \pm 1$	$\mathrm{L} \pm 1$	$\mathrm{P} \pm 1$	$\mathrm{d} \pm 0.05$			Wire Wound	Power Film
PRM 2W	11.5	7.5	20	5	0.70	250 V	500 V	$0.1 \Omega-27 \Omega$	$28 \Omega-120 \mathrm{~K} \Omega$
PRM 3W	12.5	8.5	25	5	0.70	300 V	600 V	$0.1 \Omega-39 \Omega$	$40 \Omega-150 \mathrm{~K} \Omega$
PRM 5W	13	9	25	5	0.75	350 V	700 V	$0.1 \Omega-47 \Omega$	$48 \Omega-150 \mathrm{~K} \Omega$
PRM 7W	13	9	38	5	0.75	500 V	1000 V	$0.1 \Omega-680 \Omega$	$681 \Omega-200 \mathrm{~K} \Omega$
PRM10W	13	9	50	5	0.75	700 V	1400 V	$0.1 \Omega-910 \Omega$	$911 \Omega-200 \mathrm{~K} \Omega$

6．Derating Curve

uniohm

6．1 Voltage rating：
Resistors shall have a rated direct－current（DC）continuous working voltage or an approximate sine－wave root－mean－square（RMS） alternating－current（AC）continuous working voltage at commercial－line frequency and waveform corresponding to the power rating，as determined from the following formula：

$$
R C W V=\sqrt{P \times R}
$$

Where： $\mathrm{RCWV}=$ rated dc or RMS ac continuous working voltage at commercial－line frequency and waveform（VOLT．）

$$
\begin{aligned}
& \mathrm{P}=\text { power rating (WATT.) } \\
& \mathrm{R}=\text { nominal resistance }(\mathrm{OHM})
\end{aligned}
$$

7．Structure

No．	Name	Material Generic Name
1	Body	$\mathrm{Al}_{2} \mathrm{O}_{3}$
2	Cap	Tin plated iron
3	Lead	Copper wire
4	Ceramic case	$\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{CaO}$
5	Filling materials	SiO_{2}
Power film：Metal Oxide Film		
	Wire－wound：Ni－Cr alloys	

8．Performance Specification

Characteristic	Limits	Test Methods （GB／T5729\＆JIS－C－5201\＆IEC60115－1）
Temperature Coefficient	$\begin{aligned} & \geqq 20 \Omega: \pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & <20 \Omega: \pm 400 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{aligned}$	4．8 Natural resistance changes per temp．Degree centigrade $\begin{aligned} & \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right) \\ & \mathrm{R}_{1}: \text { Resistance Value at room temperature }\left(\mathrm{t}_{1}\right) ; \\ & \mathrm{R}_{2}: \text { Resistance at test temperature } \quad\left(\mathrm{t}_{2}\right) \\ & \mathrm{t}_{1:}+25^{\circ} \mathrm{C} \text { or specified room temperature } \\ & \mathrm{t}_{2:} \text { Test temperature }\left(-55^{\circ} \mathrm{C} \text { or } 125^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
Short－time overload	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	4．13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max．Overload Votage whichever less for 5 seconds．
Dielectric withstanding voltage	No evidence of flashover mechanical damage，arcing or insulation break down．	4．7 Resistors shall be clamped in the trough of a 90° metallic V－block and shall be tested at AC potential respectively specified in the above list for $60-70$ seconds．for cement fixed resistors the testing voltage is 1000 V ．
Resistance to soldering heat	Resistance change rate must be in \pm $(1 \%+0.05 \Omega)$ ，and no mechanical damage．	4．18 Permanent resistance change when leads immersed to a point 2．0－ 2.5 mm from the body in $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ solder for 10 ± 1 seconds．

uniokm

Solderability	95\％coverage Min．	4．17 The area covered with a new，smooth，clean，shiny and continuous surface free from concentrated pinholes． Test temp．Of solder： $245^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ Dwell time in solder：2～3seconds．
Terminal strength	No evidence of mechanical damage	4．16 Direct load： Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads． Twist test： Terminal leads shall be bent through 90° at a point of about 6 mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations．
Humidity （Steady state）	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	4．24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40 \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \% \mathrm{RH}$ relative humidity
Load life in humidity	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	7．9 Resistance change after 1000 hours（ 1.5 hours＂ON＂， 0.5 hours ＂OFF＂）at RCWV or Max．Working Voltage whichever less in a humidity test chamber controlled at $40 \pm 2^{\circ} \mathrm{C}$ and $93 \% \pm 3 \% \mathrm{RH}$ ．
Load life	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	4．25．1 Permanent Resistance change after 1000 hours operating at RCWV or Max．Working Voltage whichever less with duty cycle of 1.5 hours＂ON＂， 0.5 hour＂OFF＂at $70 \pm 2^{\circ} \mathrm{C}$ ambient．
Low Temperature Storage	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	IEC 60068－2－1（Aa） Lower limit temperature，for 2 H ．
High Temperature Exposure	For Wire－wound：$\Delta \mathrm{R} / \mathrm{R}: \pm 5 \%$ For Power film range： $\begin{aligned} & <100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 5 \% \\ & \geqq 100 \mathrm{~K} \Omega \Delta \mathrm{R} / \mathrm{R}: \pm 10 \% \end{aligned}$	MIL－STD－202 108A Upper limit temperature ，for 16 H ．

9．Note

9．1．UNI－ROYAL recommend products store in warehouse with temperature between 15 to $35^{\circ} \mathrm{C}$ under humidity between 25 to $75 \% \mathrm{RH}$ ．
Even under storage conditions recommended above，solder ability of products will be degraded stored over 1 year old．
9．2．Cartons must be placed in correct direction which indicated on carton，otherwise the reel or wire will be deformed．
9．3．Storage conditions as below are inappropriate：
a．Stored in high electrostatic environment
b．Stored in direct sunshine，rain，snow or condensation．
c．Exposed to sea wind or corrosive gases，such as $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$ ，etc．
10．Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	$1 \sim 5$	Mar．20，2018	Haiyan Chen	Nana Chen
2	Modify characteristic	$4 \sim 5$	Feb．26，2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov．20，2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov．07，2022	Haiyan Chen	Yuhua Xu

