

DATA SHEET

Product Name Wire-Wound Fixed Resistors

Part Name KNP Series

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Wire-Wound Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Excellent flame retardant coating
- 1.3 Too low or too high ohmic value can be supplied on a case to basis
- 1.4 Non-inductive type available

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Wire-Wound Fixed Resistors type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.

Example:

KNP= Wire-Wound Fixed Resistors type.

- 2.2 5th~6th digits:
- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

 $1/16W \sim 1/2W (< 1W)$

Wattage		1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16
Normal Size		W2	W3	W4	W5	W6	W8	WA	WG
Small Size		S2	S3	S4	S5	S6	S8	SA	SG
1W~16W (≧1W)									
Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	3S	5S	7S	8S	9S	AS	FS

2.2.2 For power rating less than 1 watt, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code.

Example:

WA=1/10W; U2=1/2W-SS.

2.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U.

Example: AW=10W; 3S=3W-S

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

$$F=\pm 1\%$$
 $G=\pm 2\%$ $J=\pm 5\%$ $K=\pm 10\%$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0",the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.;

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0=10^{0}$$
 $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$
 $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

2.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box

T=Tape/Reel P=Tape/Box of PT-26 products

2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code is to be used for some packing quantities:

A=500pcs B=2500pcs C=10000pcs D=20000pcs G=25000pcs H=50000pcs

2.4.5 For the FORMED type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

MF=M-type with flattened lead wire

MK= M-type with kinked lead wire

ML= M-type with normal lead wire

MC= M-type with bending lead wire

F0= F-type

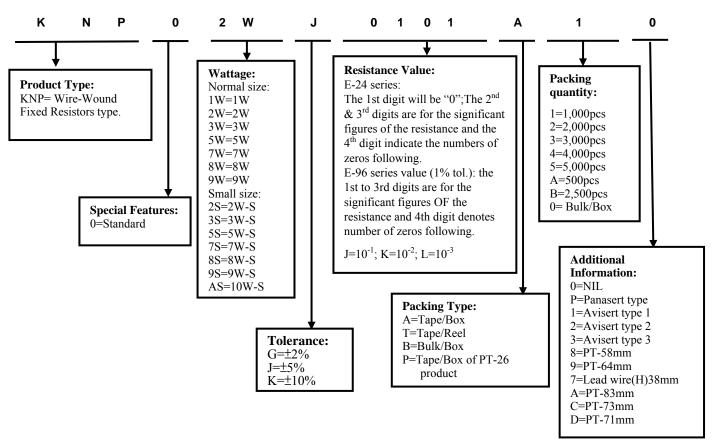
F1= F1-type

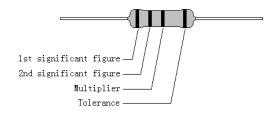
F2= F2-type

F3= F3-type

2.4.6 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

0=NIL P=Panasert type 1=Avisert type 1 2=Avisert type 2


3=Avisert type 3 A=Cutting type CO 1/4W-A type B= Cutting type CO 1/4W-B type

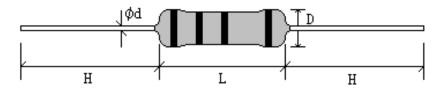

3. Ordering Procedure

(Example: KNP 2W $\pm 5\%$ 100 Ω T/B-1000)

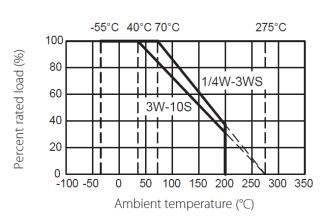
4. Marking

Resistors shall be marked with color coding Colors shall be in accordance with JIS C 0802

4.1 Label:


Label shall be marked with following items:

- (1) Type and style
- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM



5. Ratings & Dimension

Trino	Dimension(mm)					Tolerance	Resistance Range	
Type	D±1	L±1	d±0.05	H±3	PT	Tolerance	Resistance Range	
KNP 1/4W	2.5	6.5	0.54	28	52	±2% 、±5% 、±10%	$0.01\Omega\sim200\Omega$	
KNP 1/2WS	2.5	6.5	0.54	28	52	±2% 、 ±5% 、 ±10%	$0.01\Omega\sim200\Omega$	
KNP 1/2W	3.0	9.5	0.54	28	52	±2% 、 ±5% 、 ±10%	0.01Ω~390Ω	
KNP 1WS	3.0	9.5	0.54	28	52	±2% 、±5% 、±10%	0.01Ω~390Ω	
KNP 1W	4.5	11.5	0.70	25	52	±2% 、±5% ×±10%	0.01Ω~1.2ΚΩ	
KNP 2WS	4.5	11.5	0.70	25	52	±2% 、±5% 、±10%	0.01Ω~1.2ΚΩ	
KNP 2W	5.5	15.5	0.70	28	64	±2% 、±5% 、±10%	0.01Ω~3.0ΚΩ	
KNP 3WS	5.5	15.5	0.70	28	64	±2% 、±5% 、±10%	0.01Ω~3.0ΚΩ	
KNP 3W	6.5	17.5	0.75	28	64	±2% 、±5% 、±10%	0.039Ω~3.9ΚΩ	
KNP 5WS	6.5	17.5	0.75	28	64	±2% 、±5% 、±10%	0.039Ω~3.9ΚΩ	
KNP 5W	8.5	24.5	0.75	38	90	±2% 、±5% 、±10%	0.082Ω~5.6ΚΩ	
KNP 7WS	8.5	24.5	0.75	38	90	±2% 、±5% 、±10%	0.082Ω~5.6ΚΩ	
KNP 7W	8.5	29.5	0.75	38	B/B	±2% 、±5% 、±10%	0.1Ω~8.2ΚΩ	
KNP 8WS	8.5	29.5	0.75	38	B/B	±2% 、±5% 、±10%	0.1Ω~8.2ΚΩ	
KNP 8W	8.5	39.5	1.00	38	B/B	±2% 、±5% 、±10%	0.15Ω~12ΚΩ	
KNP 9WS	8.5	39.5	1.00	38	B/B	±2% 、±5% 、±10%	0.15Ω~12ΚΩ	
KNP 9W	8.5	52.5	1.00	38	B/B	±2% 、±5% 、±10%	0.22Ω~15ΚΩ	
KNP 10WS	8.5	52.5	1.00	38	B/B	±2% 、±5% ×±10%	0.22Ω~15ΚΩ	

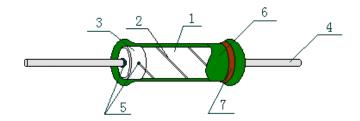
6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)


P = power rating (WATT.)

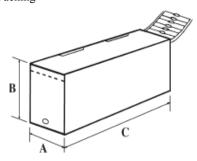
R= nominal resistance (OHM)

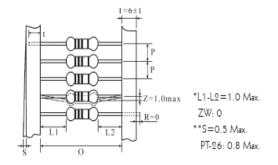
7. Structure

No.	Name	Raw materials
1	Basic body	Rod Type Ceramics
2	Resistor	Ni-Cr Alloys
3	End cap	Steel (Tin Plated iron Surface)
4	Lead wire	Tin solder coated copper wire
5	Joint	By welding
		Normal size & Insulated Non-Flame Paint
6	Coating	Color: Deep Green (Normal size)
		Light Green (small size)
7	Marking	Epoxy Resin

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	≧ 20Ω: ±300PPM/°C. <20Ω: ±400PPM/°C	$ \begin{array}{c} 4.8 \text{ Natural resistance changes per temp. Degree centigrade} \\ \hline \frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 (\text{PPM/°C}) \\ \hline R_1: \text{ Resistance Value at room temperature } (t_1) ; \\ R_2: \text{ Resistance at test temperature} \\ (\text{Upper limit temperature or Lower limit temperature}) \\ \hline t_1: +25^{\circ}\text{C or specified room temperature} \\ \hline t_2: \text{ Upper limit temperature or Lower limit temperature test temperature} \\ \end{array} $
Short-Time Overload	$\Delta R/R \le \pm (2\% + 0.05 \ \Omega) Max$, with no evidence of mechanical damage	4.13 Permanent resistance change after the application of a potential of 2.5 times rewy for 5 seconds.
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Resistance to soldering heat	Resistance change rate is: $\pm (1\%+0.05\Omega)$ Max. With no evidence of mechanical damage	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°C solder for 10±1 seconds.
Solderability	95% Coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder: 245 °C ±3 °C Dwell time in solder: 2~3seconds.
Load life in humidity	Resistance change rate is:±(5%+0.05Ω) Max With no evidence of mechanical damage.	7.9 resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity test chamber controlled at 40°C±2°C and 90 to 95% relative humidity.



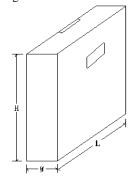


	Resistance change rate is: $\pm (5\% + 0.05\Omega)$	4.25.1 permanent resistance change after 1,000 hours operating at		
Load life	Max With no evidence of mechanical	RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C		
	damage.	±2°C ambient.		
Low	Resistance change rate is: $\pm (5\% + 0.05\Omega)$	IEC 60068 2.1 (As)		
Temperature	Max With no evidence of mechanical	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.		
Storage	damage.			
High	Resistance change rate is: $\pm (5\% + 0.05\Omega)$	MIL-STD-202 108A		
Temperature	Max With no evidence of mechanical	Upper limit temperature , for 16H.		
Exposure	damage.	Opper minit temperature 7 for form.		
Danid abanca of	Resistance change rate is:			
Rapid change of	$\pm (2\% + 0.05\Omega)$ Max. With no evidence of	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.		
temperature	mechanical damage.			

9. Packing 9.1 Tapes in Box Packing

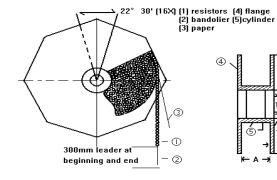
					Dimens	ion of T/B (mm)
Part No.	О	P	A±5	B±5	C±5	Qty/Box
KNP 1/4W	52±1	5±0.3	75	116	255	5,000pcs
KNP 1/2WS	52±1	5±0.3	75	116	255	5,000pcs
KNP 1/2W	52±1	5±0.3	75	45	255	1,000pcs
KNP 1WS	52±1	5±0.3	75	45	255	1,000pcs
KNP 1W	52±1	5±0.3	86	82	255	1,000pcs
KNP 2WS	52±1	5±0.3	86	82	255	1,000pcs
KNP 2W	64±5	10±0.5	90	119	255	1,000pcs
KNP 3WS	64±5	10±0.5	90	119	255	1,000pcs
KNP 3W	64±5	10±0.5	90	88	255	500pcs
KNP 5WS	64±5	10±0.5	90	88	255	500pcs
KNP 5W	90±5	10±0.5	115	124	500	500pcs
KNP 7WS	90±5	10±0.5	115	124	500	500pcs

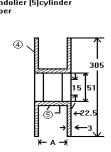
Dimension of Reel (mm)


1,000pcs

700pcs

700pcs


9.2 Tapes in Reel Packing



64±5

90±5

90±5

Part No.	0	A	W±5	H±5	L±5	Qty/Box
KNP 1/4W	52±1	73±2	85	295	293	5,000pcs
KNP 1/2WS	52±1	73±2	85	295	293	5,000pcs
KNP 1/2W	52±1	73±2	85	295	293	2,500pcs
KNP 1WS	52±1	73±2	85	295	293	2,500pcs
KNP 1W	52±1	73±2	85	295	293	2,500pcs
KNP 2WS	52±1	73±2	85	295	293	2,500pcs
KNP 2W	64±5	80±5	95	295	293	1,000pcs
KNP 3WS	64±5	80±5	95	295	293	1,000pcs
KNP 3W	64±5	80±5	95	295	293	1,000pcs

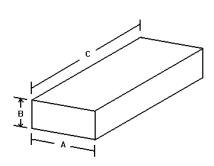
295

310

310

95

121


121

9.3 Bulk in Box Packing

KNP 5WS

KNP 7WS

KNP 5W

80±5

115±5

115±5

Dimension of Box (mm)	1
-----------------------	---

293

310

310

				Difficusion of Dox (IIIII)
Part No.	A±5	B±5	C±5	Qty/Box
KNP 1/4W	140	80	240	500/10,000pcs
KNP 1/2WS	140	80	240	500/10,000pcs
KNP 1/2W	140	80	240	250/5,000pcs
KNP 1WS	140	80	240	250/5,000pcs
KNP 1W	140	80	240	100/2,500pcs
KNP 2WS	140	80	240	100/2,500pcs
KNP 2W	140	80	240	100/1,500pcs
KNP 3WS	140	80	240	100/1,500pcs
KNP 3W	140	80	240	100/1,000pcs
KNP 5WS	140	80	240	100/1,000pcs
KNP 5W	140	80	240	25/400pcs
KNP 7WS	140	80	240	25/400pcs
KNP 7W	140	80	240	25/300pcs
KNP 8WS	140	80	240	25/300pcs
KNP 8W	140	80	240	25/200pcs
KNP 9WS	140	80	240	25/200pcs
KNP 9W	140	80	240	25/200pcs
KNP 10WS	140	80	240	25/200pcs

10. <u>Note</u>

10.1 UNI-ROYALrecommend the storage condition temperature: 15°C~35°C, humidity:25%~75%.

(Put condition for individual product).

Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

- 10.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
 - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 10.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine · rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S · NH₃, SO₂, NO₂.

11. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~7	Mar.20, 2018	Haiyan Chen	Nana Chen
2	1.Modify the Derating Curve 2. Modify characteristic	4 5~6	Feb.19, 2019	Haiyan Chen	Yuhua Xu
3	Modify the size of 8W to 10WS wires from "0.75" to "1.00"	4	Mar.15, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice