

DATA SHEET

Product Name Wire-wound Anti-Surge Fixed Resistors

Part Name KNPA Series

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Wire-wound Anti-Surge Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Excellent flame retardant coating
- 1.3 According to IEC 61000-4-5
- 1.4 Applies to electricity meters, home appliance and ballast

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Wire-Wound Fixed Resistors type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.

Example: KNPA= Wire-Wound Anti-Surge Fixed Resistors type.

- $2.2.5^{th} \sim 6^{th}$ digits:
- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1"~"G"to denotes"1"~"16"as

Hexadecimal:

 $1/16W \sim 1/2W (< 1W)$

Wattage	1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16	
Normal Size	W2	W3	W4	W5	W6	W8	WA	WG	
Small Size		S2	S3	S4	S5	S6	S8	SA	SG
1W~16W (≥1W)									
Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	3S	5S	7S	8S	9S	AS	FS

2.2.2 For power rating less than 1 watt, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code.

Example: WA=1/10W

2.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W or S.

Example: AS=10W-S; 3S=3W-S

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

$$F=\pm 1\%$$
 $G=\pm 2\%$ $J=\pm 5\%$ $K=\pm 10\%$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of 5% series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.;
- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0=10^{0}$$
 $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

2.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box

T=Tape/Reel P=Tape/Box of PT-26 products

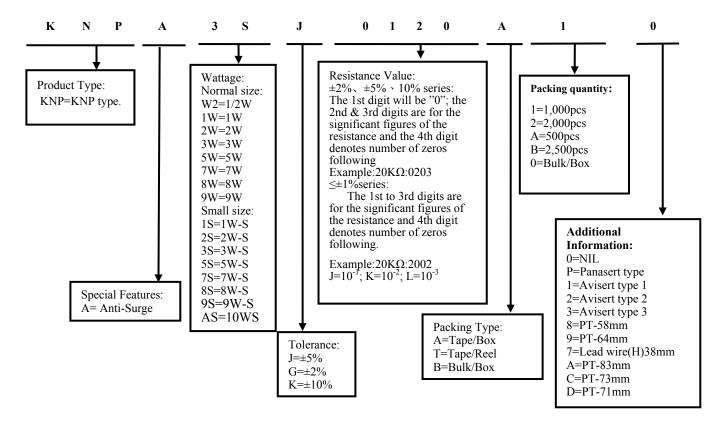
2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code or number code is to be used for some packing quantities:

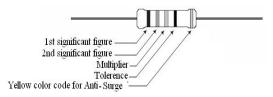
A=500pcs 1=1000pcs 2=2000pcs 5=5000pcs

2.4.5 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

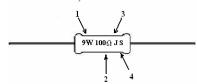
0=NIL P=Panasert type 0=NIL 1=Avisert type 1 2=Avisert type 2

3=Avisert type 3 A=Cutting type CO 1/4W-A type B= Cutting type CO 1/4W-B type




3. Ordering Procedure

(Example: KNPA 3WS $\pm 5\%$ 12 Ω T/B-1000)



4. Marking

4.1 For KNPA normal size: 1/2W, 1W, 2W, 3W and KNPA small size: 1W-S, 2W-S, 3W-S, 5W-S Resistors shall be marked with color coding \cdot colors shall be in accordance with JIS C 0802

4.2 For KNPA normal size: 8W, 9W and KNPA small size: 9W-S, 10W-S

Code description and regulation

- 1. Wattage rating.
- 2. Nominal resistance value.
- 3. Resistance Tolerance.
- 4. S = Product KNPA

4.3 Label:

Label shall be marked with following items:

- (1) Type and style
- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM

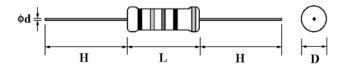
Example:

WATT : 8W VAL: 22Ω

Q'TY: 25 TOL: 5%

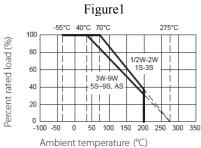
LOT: 7021528 PPM:

Wire-wound Anti-Surge Fixed Resistors



5. Ratings & Dimension

5.1 Dimension:


Truno		Dime	ension(mm)	Tolerance			
Type	D±1	L±1	d±0.05	H±3	PT	Resistance Range	Tolerance
KNPA 1/2W,1WS	3.5	9.5	0.54	28	52	10Ω~820Ω	
KNPA 1W,2WS	4.5	11.5	0.70	25	52	10Ω~1.2ΚΩ	
KNPA 2W,3WS	5.5	15.5	0.70	28	64	10Ω~3.0ΚΩ	
KNPA 3W,5WS	6.5	17.5	0.75	28	64	10Ω~3.9ΚΩ	±5%
KNPA 5W,7WS	8.5	24.5	0.75	38	90	10Ω~5.6ΚΩ	±3%
KNPA 7W,8WS	8.5	29.5	0.75	38	B/B	10Ω~8.2ΚΩ	
KNPA 8W,9WS	8.5	39.5	1.00	38	B/B	10Ω~10ΚΩ	
KNPA 9W,AS	8.5	52.5	1.00	38	B/B	10Ω~15ΚΩ	

5.2 Rating:

Туре	Low Resistance Range	Maximum Surge Voltage	Medium Resistance Range	Maximum Surge Voltage	High Resistance Range	Maximum Surge Voltage
KNPA 1/2W,1WS	10Ω~40Ω	2KV	43Ω~240Ω	3KV	270Ω~820Ω	4KV
KNPA 1W,2WS	10Ω~50Ω	3KV	51Ω~240Ω	4KV	270Ω~1.2ΚΩ	5KV
KNPA 2W,3WS	10Ω~100Ω	4KV	110Ω~240Ω	5KV	270Ω~3.0ΚΩ	6KV
KNPA 3W,5WS	10Ω~100Ω	6KV	110Ω~680Ω	7KV	750Ω~3.9ΚΩ	8KV
KNPA 5W,7WS	10Ω~160Ω	7KV	180Ω~680Ω	8KV	750Ω~5.6ΚΩ	9KV
KNPA 7W,8WS	10Ω~160Ω	8KV	180Ω~680Ω	9KV	750Ω~8.2ΚΩ	10KV
KNPA 8W,9WS	10Ω~160Ω	9KV	180Ω~680Ω	10KV	750Ω~10ΚΩ	10KV
KNPA 9W,AS	10Ω~160Ω	10KV	180Ω~680Ω	10KV	750ΚΩ~15ΚΩ	10KV

6. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derate as shown in figure 1

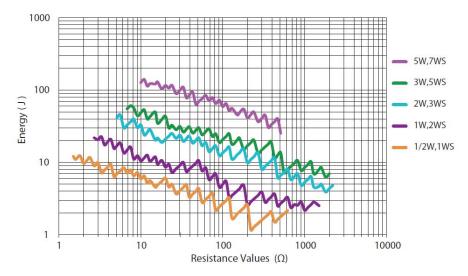
6.1 Voltage rating:

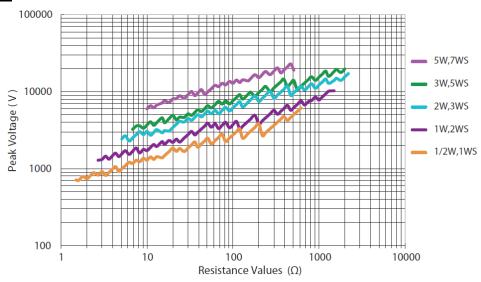
Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

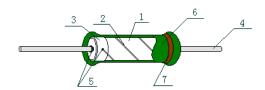
$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)


R= nominal resistance (OHM)




7. Pulses Energy Curve

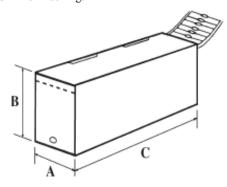
8. Pulses Voltage Curve

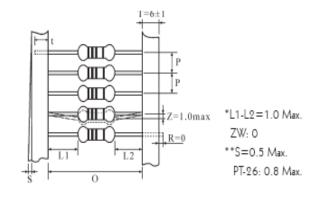
9. Structure

No.	Name	Raw materials
1	Basic body	Rod Type Ceramics
2	Resistor	Ni-Cr &Cu-Ni Alloys
3	End cap	Steel (Tin Plated iron Surface)
4	Lead wire	Tin solder coated copper wire
5	Joint	By welding
		Normal size & Insulated Non-Flame Paint
6	Coating	Color: Deep Green (Normal size)
		Light Green (small size)
7	Marking	Epoxy Resin

10. Performance Specification

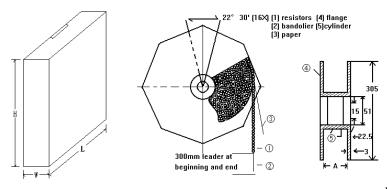
Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	±200PPM/°C	$ \begin{array}{c} 4.8 \text{ Natural resistance changes per temp. Degree centigrade} \\ \hline \frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 (\text{PPM/}^{\circ}\text{C}) \\ \hline R_1(t_2\text{-}t_1) & \cdot \\ \hline R_1: \text{ Resistance Value at room temperature } (t_1) \; ; \\ \hline R_2: \text{ Resistance at test temperature} \\ (\text{Upper limit temperature or Lower limit temperature}) \\ \hline t_1: +25^{\circ}\text{C or specified room temperature} \\ \hline t_2: \text{ Upper limit temperature or Lower limit temperature test temperature} \\ \end{array} $		
Short-Time Overload	Resistance change rate must be in $\pm (2\% + 0.05\Omega) Max$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 10 times Power for 5 seconds.		
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.		
Resistance to soldering heat	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5 °C solder for 10±1 seconds.		
Solderability	95% Coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder: 245 °C ± 3 °C Dwell time in solder: 2~3 seconds.		
Rapid change of temperature	Resistance change rate must be in $\pm (2\% + 0.05\Omega)$, and no mechanical damage.	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.		
Humidity (steady state)	Resistance change rate must be in \pm (2%+0.05 Ω), and no mechanical damage.	4.24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90-95% relative humidity,		
Load life in humidity	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$, and no mechanical damage.	7.9 resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity test chamber controlled at 40°C±2 °C and 90 to 95% relative humidity.		
Surge Immunity	Resistance change rate is:±(5%+0.05Ω Max	Surge voltageas per the 1.2 μ s/50 μ s exponential open circuit voltage waveform according to IEC 61000-4-5 standard as shown below: $U(\% \text{ pulse voltage})$ $U(\% \text{ pulse voltage})$ 10 0.5 0.5 0.5 0.5 0.7		

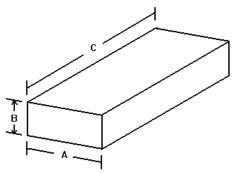




Resistance to solvent	No deterioration of protective coatings & markings	4.29 Specimens shall be immersed in a bath of trichloroethylene completely for 3 min. With ultrasonic
Load life	Resistance change rate must be in $\pm (5\% \pm 0.05\Omega)$, and no mechanical damage.	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70 °C±2°C ambient.
Low Temperature Storage	Resistance change rate must be in $\pm (5\% \pm 0.05\Omega)$, and no mechanical damage.	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.
High Temperature Exposure	Resistance change rate must be in $\pm (5\% \pm 0.05\Omega)$, and no mechanical damage.	MIL-STD-202 108A Upper limit temperature , for 16H.

11. Packing 11.1 Tapes in Box Packing:


					Dimension of T/B (mm)		
Part No.	О	P	A±5	B±5	C±5	Qty/Box	
KNPA 1/2W	52±1	5±0.3	75	45	255	1,000pcs	
KNPA 1WS	52±1	5±0.3	75	45	255	1,000pcs	
KNPA 1W	52±1	5±0.3	86	82	255	1,000pcs	
KNPA 2WS	52±1	5±0.3	86	82	255	1,000pcs	
KNPA 2W	64±5	10±0.5	90	119	255	1,000pcs	
KNPA 3WS	64±5	10±0.5	90	119	255	1,000pcs	
KNPA 3W	64±5	10±0.5	90	88	255	500pcs	
KNPA 5WS	64±5	10±0.5	90	88	255	500pcs	
KNPA 5W	90±5	10±0.5	115	124	500	500pcs	
KNPA 7WS	90±5	10±0.5	115	124	500	500pcs	



11.2 Tapes in Reel Packing:

					Dimension of Reel (mm)		
Part No.	О	A	W±5	H±5	L±5	Qty/Box	
KNPA 1/2W	52±1	73±2	85	295	293	2,500pcs	
KNPA 1WS	52±1	73±2	85	295	293	2,500pcs	
KNPA 1W	52±1	73±2	85	295	293	2,500pcs	
KNPA 2WS	52±1	73±2	85	295	293	2,500pcs	
KNPA 2W	64±5	80±5	95	295	293	1,000pcs	
KNPA 3WS	64±5	80±5	95	295	293	1,000pcs	
KNPA 3W	64±5	80±5	95	295	293	1,000pcs	
KNPA 5WS	64±5	80±5	95	295	293	1,000pcs	
KNPA 5W	90±5	115±5	121	310	310	700pcs	
KNPA 7WS	90±5	115±5	121	310	310	700pcs	

11.3 Bulk in Box Packing:

				Dimension of Box (mm)
Part No.	A±5	B±5	C±5	Qty/Box
KNPA 1/2W	140	80	240	250/5,000pcs
KNPA 1WS	140	80	240	250/5,000pcs
KNPA 1W	140	80	240	100/2,500pcs
KNPA 2WS	140	80	240	100/2,500pcs
KNPA 2W	140	80	240	100/1,500pcs
KNPA 3WS	140	80	240	100/1,500pcs
KNPA 3W	140	80	240	100/1,000pcs
KNPA 5WS	140	80	240	100/1,000pcs
KNPA 5W	140	80	240	25/400pcs
KNPA 7WS	140	80	240	25/400pcs
KNPA 7W	140	80	240	25/300pcs
KNPA 8WS	140	80	240	25/300pcs
KNPA 8W	140	80	240	25/200pcs
KNPA 9WS	140	80	240	25/200pcs
KNPA 9W	140	80	240	25/200pcs
KNPA 10WS	140	80	240	25/200pcs

12. <u>Note</u>

- 12.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 12.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 12.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , etc.

13. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~8	Mar.20, 2018	Haiyan Chen	Nana Chen
2	1.Modify the Derating Curve 2. Add the Pulses Energy Curve and Pulses Voltage Curve 3. Modify characteristic	4 5 6~7	Feb.23, 2019	Haiyan Chen	Yuhua Xu
3	Modify the Paint color	5	Jun.24, 2019	Haiyan Chen	Yuhua Xu
4	Modify the size of 8W to 10WS wires from "0.75" to "1.00"	4	Mar.15, 2022	Haiyan Chen	Yuhua Xu

[©] Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice