

DATA SHEET

Product Name High Power Wire-wound Flat Aluminum Shell Fixed Resistors

Part Name HPWF 40W Series

File No. DIP-SP-057

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

High Power Wire-wound Flat Aluminum Shell Fixed Resistors

1. Scope

- 1.1 This datasheet is the characteristics of High Power Wire-wound Flat Aluminum Shell Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 High Power Wire-wound Flat Aluminum Shell Fixed Resistors
- 1.3 Easy to assembled on PCB
- 1.4 Application: Power supply of frequency converter
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 High Power Wire-wound Flat Aluminum Shell Fixed Resistors the 1st to 4rd digits are to indicate the product type.

Example: HPWF= High Power Wire-wound Flat Aluminum Shell Fixed Resistors

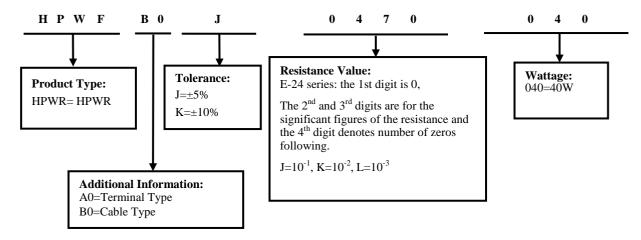
- $2.25^{th} \sim 6^{th}$ digits:
- 2.2.1 The 5th & 6th digits will show the connector style.

Example: A0=Terminal Type; B0=Cable Type.

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

$$J=\pm 5\% K=\pm 10\%$$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of 5%&10% series, the8th digit is "0",the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;
- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

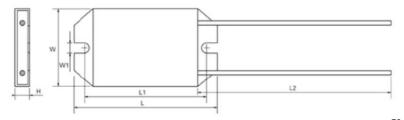

$$0=10^{0} \ 1=10^{1} \ 2=10^{2} \ 3=10^{3} \ 4=10^{4} \ 5=10^{5} \ 6=10^{6} \ J=10^{-1} \ K=10^{-2} \ L=10^{-3} \ M=10^{-4}$$

- 2.5 The $12^{th} \sim 14^{th}$ digits.
- 2.5.1 The 12th to the 14th digits are to denote the actual wattage of the products.

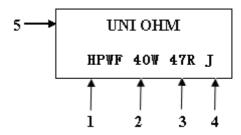
Example: 040 = 40W

3. Ordering Procedure

(Example: HPWF 40W $\pm 5\%$ 47 Ω B/B)



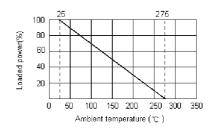
High Power Wire-wound Flat Aluminum Shell Fixed Resistors


4. Dimension

						Omt:mm		
Type	L±1	L1±0.5	L2 +20/-0	W±0.5	W1±0.2	H±0.5	Resistance Range	
HPWR 40W	85	72	300	45	5.5	8.2	10Ω~100Ω	

*Remark: For further information, please contact our sales team.

5. Resistor marked


Code description and regulation:

- 1. Resisters type
- 2. Wattage rating
- 3. Nominal resistance value
- 4. Resistance tolerance. $J: \pm 5\%$
- 5. Trademark

marking: LASER PRINT

Note: The marking code shall be prevailed in kind!

6. Derating Curve

6.1Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

High Power Wire-wound Flat Aluminum Shell Fixed Resistors

7. Performance Specification

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1) 4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{$			
Temperature Coefficient	<20Ω: ±400PPM/°C ≥20Ω: ±350PPM/°C				
Short time overlord	Resistance change rate is $\pm (5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or the max. Overload voltage respectively specified the above list, whichever less for 10 seconds.			
Load life (room temperature)	Resistance change rate is :±(5%+0.05Ω) max. With no evidence of mechanical damage.	(Room temperature 25°C±5°C) continue electrify for 96h.			
Humidity (Steady state)	Resistance change rate is: $\pm (3\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity			
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down	Applied voltage AC1000V for 60 seconds			
Insulation resistance	≥100MΩ	More than $100M\Omega$ at DC $500V$			

8. <u>Note</u>

- 8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to $35\,^{\circ}\mathrm{C}$ under humidity between 25 to $75\,^{\circ}\mathrm{RH}$.
 - Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

9. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~4	Apr.16, 2019	Haiyan Chen	Yuhua Xu
2	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
3	Modify the Ordering Procedure	2	Dec.31, 2024	Haiyan Chen	Yuhua Xu
4	Modify the product name	1 3	May.13, 2025	Haiyan Chen	Yuhua Xu
	Add the resistance range		Way.13, 2023		Tunua 74a

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice