

Uni-Royal

DATASHEET

Product Name **High Voltage Non Inductive Resistance**

Part Name **MGRN Series**

File No. **DIP-SP-087**

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This data sheet is the characteristics of High Voltage Non Inductive Resistance manufactured by UNI-ROYAL.
- 1.2 Compliant with RoHS directive.
- 1.3 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 1st~3rd codes: Product type. E.g.: MGR=Metal Glaze Film Fixed Resistors
- 2.2 The 4th digit is to denote the Special Features: N= Non-Inductive and High Voltage
- 2.3 5th~6th digits:

2.3.1 This is to indicate the wattage or power rating. To indicate the size and the numbers, The following codes are used; and please refer to the following chart for detail:

Wattage	8	AW
Normal Size	8W	10W

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

J= $\pm 5\%$

2.4 The 8th to 11th digits is to denote the Resistance Value.

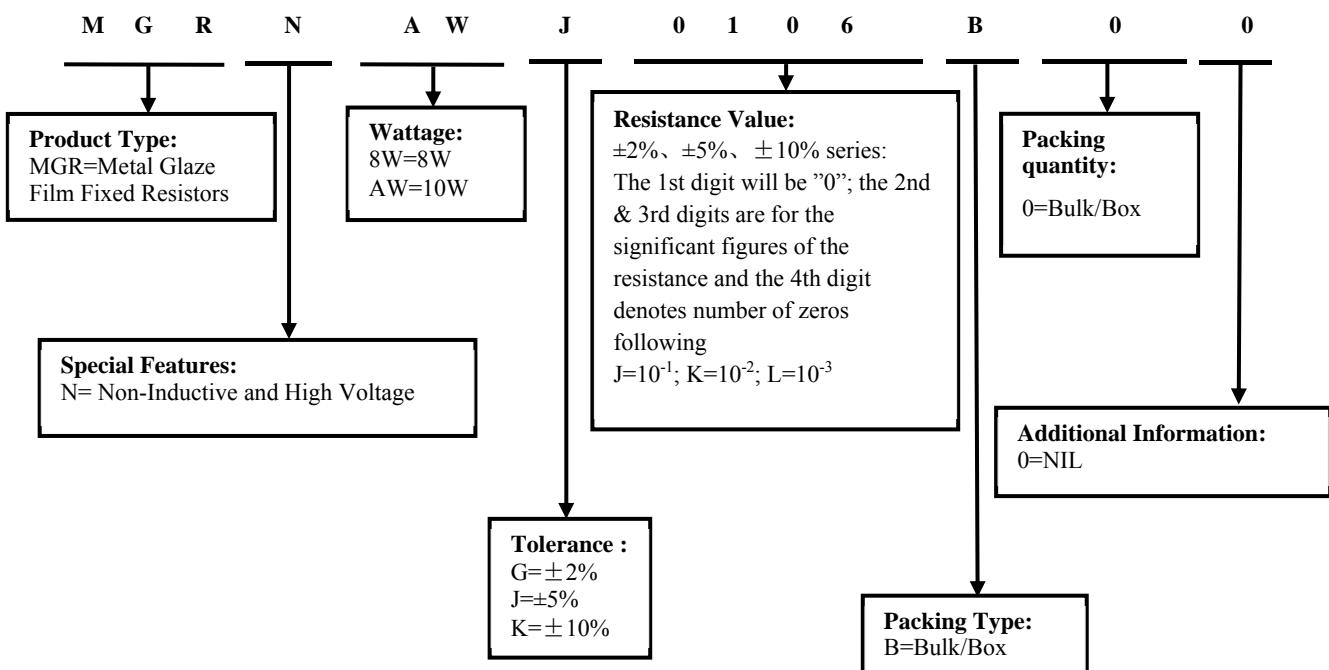
2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

2.4.3 The following numbers and the letter codes are to be used to indicate the number of zeros in the 11th digit:

0=10⁰ 1=10¹ 2=10² 3=10³ 4=10⁴ 5=10⁵ 6=10⁶ J=10⁻¹ K=10⁻² L=10⁻³ M=10⁻⁴

2.5 The 12th, 13th & 14th digits.

2.5.1 The 12th digit is to denote the Packaging Type with the following codes: B=Bulk/Box


2.5.2 The 13th digit is normally to indicate the Packing Quantity of Tape/Reel packaging types. The following letter code is to be used for some packing quantities: 0=Bulk/Box

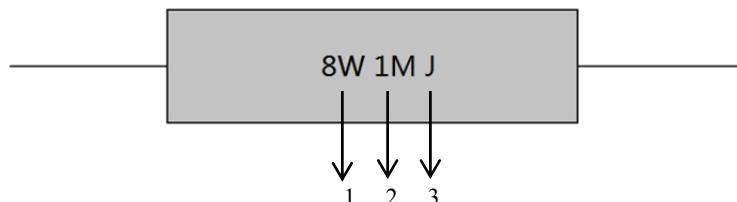
2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

0=NIL

3. Ordering Procedure

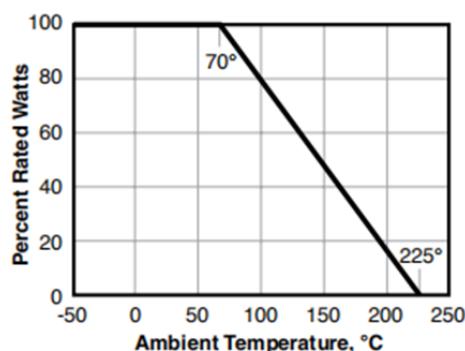
(Example: MGRN 10W $\pm 5\%$ 10M Ω)

4. Dimension (Unit: mm)


Type	$L \pm 1$	$D \pm 1$	$H \pm 2$	$\Phi d \pm 0.05$
MGRN 8W	51	8	35	1.0
MGRN 10W	115	8	35	1.0

5. Ratings

Type	Power Rating	Tolerance	Max. Working Voltage	Max. Overload Voltage	Resistance Range	Color of primer
MGRN	8W	$\pm 2\%$ 、 $\pm 5\%$ 、 $\pm 10\%$	20kV	20kV	$1M\Omega \sim 500M\Omega$	Sky Blue
MGRN	10W	$\pm 2\%$ 、 $\pm 5\%$ 、 $\pm 10\%$	35kV	50kV	$1M\Omega \sim 500M\Omega$	Sky Blue


6. Marking

Example:

1. Wattage Rating
2. Resistance Value
3. Resistance Tolerance. J: $\pm 5\%$

7. Derating Curve

8. Performance Specification

Characteristic	Limits	Test Method (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	$\pm 200 \text{PPM}/^\circ\text{C}$	<p>Natural resistance changes per temp. Degree centigrade</p> $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (PPM}/^\circ\text{C})$ <p>R_1: Resistance Value at room temperature (t_1) ; R_2: Resistance at room temperature $+100^\circ\text{C}$ (t_2) t_1: $+100^\circ\text{C}$ room temperature Test temperature: Room temperature (t_1) ; Room temperature $+100^\circ\text{C}$ (t_2)</p>
Short-time overload	$\Delta R/R: \pm(3\%+0.05\Omega)$	4.13 Permanent resistance change after the application of a potential of 1.5 times RCWV or Max. Overload Voltage whichever less for 5seconds.
Insulation resistance	$\geq 1,0000 \text{ M}\Omega$	Test voltage : $500 \pm 50 \text{ VDC}$; test the resistance value after 1 minute.
Dielectric withstanding voltage	No visible mechanical damage	Apply 1000V for 60~70S
Rapid change of temperature	$\Delta R/R: \pm(3\%+0.05\Omega)$	4.19 30 min at -55°C and 30 min at 155°C ,100 cycles
Solderability	Coverage must be over 95%.	<p>The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes.</p> <p>Test temp. Of solder: $245^\circ\text{C} \pm 3^\circ\text{C}$ Dwell time in solder: 2~3seconds.</p>
Humidity (Steady state)	$\Delta R/R : \pm(3\%+0.05\Omega)$	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40 \pm 2^\circ\text{C}$ and 90~95%RH relative humidity
Load Life	$\Delta R/R : \pm(3\%+0.05\Omega)$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70 \pm 2^\circ\text{C}$ ambient.

9. Note

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

- Stored in high electrostatic environment
- Stored in direct sunshine, rain, snow or condensation.
- Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br , etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~4	Aug.08,2023	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice.