

DATASHEET

Product Name **High Power Wire-wound Flat Aluminum Shell Fixed Resistors**

Part Name **HPWR 110W、120W、220W Series**

File No. **DIP-SP-058**

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of High Power Wire-wound Flat Aluminum Shell Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 High Power Wire-wound Flat Aluminum Shell Fixed Resistors
- 1.3 Easy to assembled on PCB
- 1.4 Application: Power supply of frequency converter
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 High Power Wire-wound Flat Aluminum Shell Fixed Resistors the 1st to 4th digits are to indicate the product type.

Example: HPWR= High Power Wire-wound Flat Aluminum Shell Fixed Resistors

- 2.2 5th ~6th digits:

- 2.2.1 The 5th & 6th digits will show the connector style.

Example: A0=Terminal Type; B0=Cable Type.

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

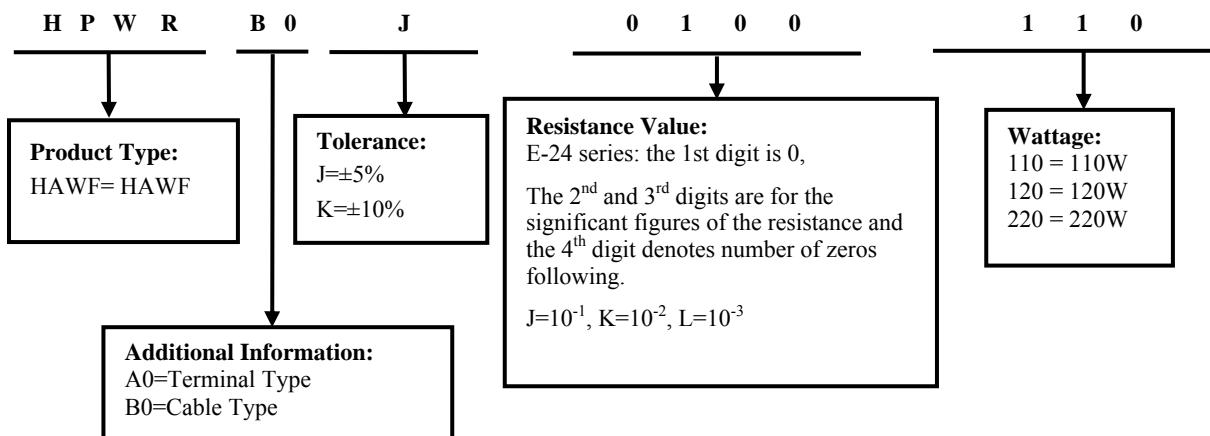
$J=\pm 5\%$ $K=\pm 10\%$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.

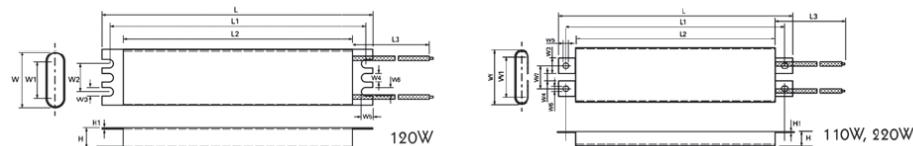
2.4.1 For the standard resistance values of 5%&10% series, the 8th digit is “0”, the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$0=10^0$ $1=10^1$ $2=10^2$ $3=10^3$ $4=10^4$ $5=10^5$ $6=10^6$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

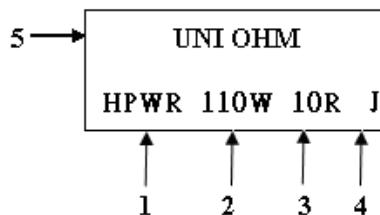

- 2.5 The 12th ~14th digits.

- 2.5.1 The 12th to the 14th digits are to denote the actual wattage of the products.


Example: 110 = 110W 120 = 120W 220=220W

3. Ordering Procedure

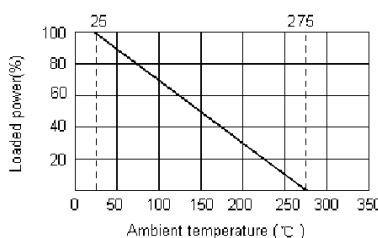
(Example: HPWR 110W $\pm 5\%$ 10 Ω B/B)


4. Dimension

Unit:mm					
Type	L±0.5	L1±0.5	W±0.5	H±0.5	L3±5
HPWR 110W	105	91.5	44.6	11.5	300
HPWR 120W	195	184	40	14	250
HPWR 220W	200	187	44.6	11.5	250

*Remark: For further information, please contact our sales team.

5. Resistor marked


Code description and regulation:

1. Resistors type
2. Wattage rating
3. Nominal resistance value
4. Resistance tolerance. J: ± 5%
5. Trademark

marking: LASER PRINT

Note : The marking code shall be prevailed in kind!

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R = nominal resistance (OHM)

7. Performance Specification

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	$\pm 300 \text{ PPM/}^{\circ}\text{C}$	<p>4.8 Natural resistance changes per temp. Degree centigrade</p> $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (PPM/}^{\circ}\text{C)}$ <p>R₁: Resistance Value at room temperature (t₁) ; R₂: Resistance at test temperature (Upper limit temperature or Lower limit temperature) t₁: +25°C or specified room temperature t₂: Upper limit temperature or Lower limit temperature test temperature</p>
Short time overlord	Resistance change rate is $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or the max. Overload voltage respectively specified in the above list, whichever less for 10 seconds.
Load life (room temperature)	Resistance change rate is $\pm(5\%+0.05\Omega)$ max. With no evidence of mechanical damage.	(Room temperature 25°C±5°C) continue electrify for 96h.
Humidity (Steady state)	Resistance change rate is: $\pm(3\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down	AC 3000V for 60 seconds

8. Note

- 8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH.
Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, etc.

9. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~4	Apr.16, 2019	Haiyan Chen	Yuhua Xu
2	Modify the ordering procedure	2	Dec.31, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice